Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/12/10.1063/1.4937743
1.
1.L. Bertini and A. D. Sole, Rev. Mod. Phys. 87, 593 (2015).
http://dx.doi.org/10.1103/RevModPhys.87.593
2.
2.R. Ciocan, J. Gaillard, M. J. Skove, and A. M. Rao, Nano. Lett. 5, 2389 (2005).
http://dx.doi.org/10.1021/nl0514644
3.
3.P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. De Heer, Science 283, 1513 (1999).
http://dx.doi.org/10.1126/science.283.5407.1513
4.
4.J. R. Wood and H. D. Wagner, Appl. Phys. Lett. 76, 2883 (2000).
http://dx.doi.org/10.1063/1.126505
5.
5.D. Garcia-Sanchez, A. San Paulo, M. J. Esplandiu, F. Perez-Murano, L. Forró, A. Aguasca, and A. Bachtold, Phys. Rev. Lett. 99, 085501 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.085501
6.
6.X. L. Wei, Y. Liu, Q. Chen, M. S. Wang, and L. M. Peng, Adv. Funct Mater. 18, 1555 (2008).
http://dx.doi.org/10.1002/adfm.200701105
7.
7.P. A. Greaney and J. C. Grossman, Phys. Rev. Lett. 98, 125503 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.125503
8.
8.T. B. Gabrielson, IEEE T. Electron. Dev. 40, 903 (1993).
http://dx.doi.org/10.1109/16.210197
9.
9.A. M. Marconnet, M. A. Panzer, and K. E. Goodson, Rev. Mod. Phys. 85, 1295 (2013).
http://dx.doi.org/10.1103/RevModPhys.85.1295
10.
10.S. Adhikari and R. Chowdhury, J. Appl. Phys. 107, 124322 (2010).
http://dx.doi.org/10.1063/1.3435316
11.
11.S. Philippi, U. Weißker, T. Mühl, A. Leonhardt, and B. Büchner, J. Appl. Phys. 110, 084319 (2011).
http://dx.doi.org/10.1063/1.3651392
12.
12.M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature (London) 381, 678 (1996).
http://dx.doi.org/10.1038/381678a0
13.
13.A. Krishnan, E. Dujardin, and T. W. Ebbesen, Phys. Rev. B 58, 14013 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.14013
14.
14.P. Jaroenapibal, D. E. Luzzi, S. Evoy, and S. Arepalli, Appl. Phys. Lett. 85, 4328 (2004).
http://dx.doi.org/10.1063/1.1815057
15.
15.E. H. Feng and R. E. Jones, Phys. Rev. B 81, 125436 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.125436
16.
16.L. F. Wang, H. Y. Hu, W. L. Guo, and P. Roy, Soc. A-Math. Phy. 466, 2325 (2010).
http://dx.doi.org/10.1098/rspa.2009.0609
17.
17.L. F. Wang and H. Y. Hu, Acta. Mech. 223, 2107 (2012).
http://dx.doi.org/10.1007/s00707-012-0694-0
18.
18.R. M. Liu and L. F. Wang, Phys. Chem. Chem. Phys. 17, 5194 (2015).
http://dx.doi.org/10.1039/C4CP05495D
19.
19.V. V. Smirnov, D. S. Shepelev, and L. I. Manevitch, Phys. Rev. Lett. 113, 135502 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.135502
20.
20.A. Eichler, M. Del Álamo Ruiz, J. A. Plaza, and A. Bachtold, Phys. Rev. Lett. 109, 025503 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.025503
21.
21.A. Castellanos-Gomez, H. B. Meerwaldt, W. J. Venstra, H. S. J. van der Zant, and G. A. Steele, Phys. Rev. B 86, 041402 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.041402
22.
22.T. Kagota, A. Nagataki, K. Takei, T. Arie, and S. Akita, Appl. Phys. Lett. 103, 203504 (2013).
http://dx.doi.org/10.1063/1.4832059
23.
23.P. Ahn, X. Chen, Z. Zhang, M. Ford, D. Rosenmann, I. W. Jung, C. Sun, and O. Balogun, Sci. Rep. 5, 10058 (2015).
http://dx.doi.org/10.1038/srep10058
24.
24.M. Dequesnes, S.V. Rotkin, and N. R. Aluru, J. Comput. Electron. 1, 313 (2002).
http://dx.doi.org/10.1023/A:1020722818600
25.
25.W. G. Conley, A. Raman, C. M. Krousgrill, and S. Mohammadi, Nano Lett. 8, 1590 (2008).
http://dx.doi.org/10.1021/nl073406j
26.
26.H. M. Ouakad and M. I. Younis, J. Sound. Vib. 330, 3182 (2011).
http://dx.doi.org/10.1016/j.jsv.2010.12.029
27.
27.H. M. Ouakad and M. I. Younis, Nonlinear Dyn. 67, 1419 (2012).
http://dx.doi.org/10.1007/s11071-011-0078-3
28.
28.H. Koh, J. J. Cannon, T. Shiga, J. Shiomi, S. Chiashi, and S. Maruyama, Phys. Rev. B 92, 024306 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.024306
29.
29.D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, J. Phys-Condens. Mat. 14, 783 (2002).
http://dx.doi.org/10.1088/0953-8984/14/4/312
30.
30.S. Nosé, Mol. Phys. 52, 255 (1984).
http://dx.doi.org/10.1080/00268978400101201
31.
31.S. Nosé, J. Chem. Phys. 81, 511 (1984).
http://dx.doi.org/10.1063/1.447334
32.
32.W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
33.
33.S. Nosé, Prog. Theor. Phys. Supp. 103, 1 (1991).
http://dx.doi.org/10.1143/PTPS.103.1
34.
34.L. G. Villanueva, R. B. Karabalin, M. H. Matheny, D. Chi, J. E. Sader, and M. L. Roukes, Phys. Rev. B 87, 024304 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.024304
35.
35.M. R. M. Crespo Da Silva and C. C. Glynn, J. Struct. Mech. 6, 437 (1978).
http://dx.doi.org/10.1080/03601217808907348
36.
36.M. R. M. Crespo Da Silva and C. C. Glynn, J. Struct. Mech. 6, 449 (1978).
http://dx.doi.org/10.1080/03601217808907349
37.
37.W. Zhang, F. X. Wang, and M. H. Yao, Nonlinear. Dynam. 40, 251 (2005).
http://dx.doi.org/10.1007/s11071-005-6435-3
38.
38.R. C. Tolman, Statistical Mechanics with Applications to Physics and Chemistry (Chemical Catalog Company, 1927).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/12/10.1063/1.4937743
Loading
/content/aip/journal/adva/5/12/10.1063/1.4937743
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/12/10.1063/1.4937743
2015-12-08
2016-09-26

Abstract

The nonlinear thermal vibration behavior of a single-walled carbon nanotube(SWCNT) is investigated by molecular dynamics simulation and a nonlinear, nonplanar beammodel. Whirling motion with energy transfer between flexural motions is found in the free vibration of the SWCNT excited by the thermal motion of atoms where the geometric nonlinearity is significant. A nonlinear, nonplanar beammodel considering the coupling in two vertical vibrational directions is presented to explain the whirling motion of the SWCNT.Energy in different vibrational modes is not equal even over a time scale of tens of nanoseconds, which is much larger than the period of fundamental natural vibration of the SWCNT at equilibrium state. The energy of different modes becomes equal when the time scale increases to the microsecond range.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/12/1.4937743.html;jsessionid=66BrEUlqWFhfP61f0iQvhhRM.x-aip-live-06?itemId=/content/aip/journal/adva/5/12/10.1063/1.4937743&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/12/10.1063/1.4937743&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/12/10.1063/1.4937743'
Right1,Right2,Right3,