Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. Zhu and X. Qian, Journal of Solid State Chemistry 183, 16321639 (2010).
2.Y.N. Chang, M. Zhang, L. Xia, J. Zhang, and G. Xing, Materials 5, 28502871 (2012).
3.R. Sathyamoorthy and K. Mageshwari, Physica E 47, 157161 (2013).
4.X. G. Zheng, C. N. Xu, K. Nishikubo, K. Nishiyama, W. Higemoto, W. J. Moon, E. Tanaka, and E. S. Otabe, Phy. Rev. B 72, 014464014468 (2006).
5.Z. Cheng, J. Xu, H. Zhong, X. Chu, and J. Song, Materials Letters 65, 2047-2050 (2011).
6.R.P. Wijesundera, Semiconductor Science and Technology 25, 045015 (2010).
7.H. Qin, Z. Zhang, X. Liu, Y. Zhang, and J. Hu, Journal of Magnetism and Magnetic Materials 322, 1994-1998 (2010).
8.A. Aslani and V. Oroojpour, Physica B-Condensed Matter 406, 144-149 (2011).
9.T. Jan, J. Iqbal, M. Ismail, N. Badshah, Q. Mansoor, A. Arshad, and Q.M. Ahkam, Materials Science in Semiconductor Processing 21, 154160 (2014).
10.L. B. Xia, W. Y. Yuan, and W. Y. Fen, “Facile Synthesis and Photocatalytic Property of CuO Nanostructure Arrays,” Acta Phys. Chim. Sin. 25, 2366-2372 (2009).
11.J. Liu, J. Jin, Z. Deng, S. Z. Huang, Z. Y. Hu, L. Wang, C. Wang, L. H. Chen, Y. Li, G. V. Tendeloo, and B. L. Su, Journal of Colloid and Interface Science 384, 19 (2012).
12.A. Azam, A. S. Ahmed, M. O., M. S. Khan, and A. Memic, International Journal of Nanomedicine 7, 35273535 (2012).
13.I. Perelshtein, G. Applerot, N. Perkas, E. Wehrschuetz-Sigl, A. Hasmann, G. Guebitz, and A. Gedanke, Surface & Coatings Technology 204, 5457 (2009).
14.B. Subramanian, K. A. Priya, S. T. Rajan, P. Dhandapani, and M. Jayachandran, Materials Letters 128, 1-4 (2014).
15.I. M. El-Nahhal, S. M. Zourab, F. S. Kodeh, M. Selmane, I. Genois, and F. Babonneau, International Nano Letters 2, 14-18 (2012).
16.D. M. Smyth, Solid State Ionics 129, 5-12 (2000).
17.S. Al-Amri, M. S. Ansari, S. Rafique, M. Aldhahri, S. Rahimuddin, A. Azam, and A. Memic, Current Nanoscience 11, 191-197 (2015).
18.T. Jan, J. Iqbal, Q. Mansoor, M. Ismail, S.H. Naqvi, A. Gul, S.F.H. Naqvi, and F. Abbas, J. Phys. D: Appl. Phys. 47, 355301 (2014).
19.H. M. Cakmak, H. A. Cetinkara, and S. Kahraman, Super Lattices and Microstructures 51, 421429 (2012).
20.P. R. Solanki, A. Kaushik, V. V. Agrawal, and B. D. Malhotra, NPG Asia Materials 3, 1724 (2011).
21.G. Gao, Nanostructures and nanomaterials: Synthesis, properties and applications (Imperial College Press, 2004).
22.I.A. Rahman, P. Vejayakumaran, C.S. Sipaut, J. Ismail, and C.K. Chee, Materials Chemistry and Physics 114, 328332 (2009).
23.R. G. Egdell, W. R. Flavell, and P. Tavener, Journal of Solid State Chem 51, 345-354 (1984).
24.M. Guedes, J. M. F. Ferreira, and A. C. Ferro, Journal of Colloid Interface Sci. 330, 119124 (2009).
25.M. T. Qamar, M. Aslam, I. M. I. Ismail, N. Salah, and A. Hameed, ACS Appl Mater Interfaces 29, 8757-69 (2015).
26.D. P. Singh and O. N. Srivastava, Journal of nanoscience and nanotechnology 9, 5345-5350 (2009).
27.O. Yayapao, T. Thongtem, A. Phuruangrat, and S. J. Thongtem, Alloys Compd. 576, 7279 (2013).
28.M. J. Hajipour, K. M. Fromm, A. A. Ashkarran, D. J. de Aberasturi, I. R. de Larramendi, T. Rojo, V. Serpooshan, W. J. Parak, and M. Mahmoudi, Trends in Biotechnology 30, 499-511 (2012).
29.L. Zhang, Y. Jiang, Y. Ding, M. Povey, and D. York, J. Nanopart. Res. 9, 479489 (2007).
30.C. Karunakaran, S. S. Raadha, and P. Gomathisankar, Mater. Sci. Semicond. Process. 16, 818824 (2013).
31.E. Malka, I. Perelshtein, A. Lipovsky, Y. Shalom, L. Naparstek, N. Perkas, T. Patick, R. Lubart, Y. Nitzan, E. Banin, and A. Gedanken, small 9, 4069-4076 (2013).
32.I. Sondi and B. Salopek-Sondi, J Colloid Interface Sci 275, 177182 (2004).
33.K. Delgado, R. Quijada, R. Palma, and H. Palza, Lett Appl Microbiol 53, 5054 (2011).
34.S. Rtimi, M. K. S. Ballo, D. Laub, C. Pulgarin, J. M. Entenza, A. Bizzini, R. Sanjines, and J. Kiwi, Applied Catalysis A: General 498, 185191 (2015).

Data & Media loading...


Article metrics loading...



ZnCuO (where x= 0, 0.01, 0.03, 0.05, 0.07 and 0.1 mol%) hierarchical nanostructures have been prepared via soft chemical route. X-ray diffraction(XRD) results of the synthesized samples reveal the monoclinic structure of CuO without any impurity related phases. The micro-structural parameters such as crystallite size and microstrain have been strongly influenced by Zndoping.Scanning electron microscope(SEM) analyses depict the formation of hierarchical nanostructures having average particle size in the range of 26-43 nm. The surface area of CuO nanostructures has been reduced systematically with the increase in Zn content which is linked with the variations in particle size. An obvious decrease in the optical band gap energy of the synthesized CuO hierarchical nanostructures has been observed with Zndoping which is assigned to the formation of shallow levels in the band gap of CuO and combined transition from oxygen 2p states to d sates of Cu and Zn ions. The bactericidal potency of the CuO hierarchical nanostructures have been found to be enhanced remarkably with Zndoping.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd