Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. R. Lloyd, J. Appl. Phys. 94, 6483 (2003).
2.A. T. Wu, K. N. Tu, J. R. Lloyd, N. Tamura, B. C. Valek, and C. R. Kao, Appl. Phys. Lett. 85, 2490 (2004).
3.T.C. Huang, T.L. Yang, J.H. Ke, C.H. Hsueh, and C.R. Kao, Scripta Mater. 80, 37 (2014).
4.C.F. Lin, S.H. Lee, and C.M. Chen, Metall. Mater. Trans. A 43A, August 2571 (2012).
5.T. L. Yang, J. J. Yu, C. C. Li, Y. F. Lin, and C. R. Kao, J. Alloy. Comp. 627, 281 (2015).
6.H. Ma’, A. Kunwar, J.H Sun, B.F. Guo, and H.R. Ma, Scripta Mater.Available online 31 May (2015).
7.V. M. Dwyer, Microelec. Rel 52(9-10), 1960 (2012).
8.H. Y. Liu, Q. S. Zhu, Z. G. Wang, and J. K. Shang, Mat. Sci. Eng. A 528, 1467 (2011).
9.L. H. Ma, Y. Zuo, F. Guo, and Y. T. Shu, J. Mat. Res. 29(22), 2737 (2014).
10.Y. Wang, W. Liu, Y. Ma, Y. Huang, and Y. Tang, Mat. Sci. For. 185, 115 (2015).
11.B. C. Valek, N. Tamura, R. Spolenak, W. A. Caldwell, A. A. MacDowell, R. S. Celestre, H. A. Padmore, J. C. Vravman, B. W. Batterman, W. D. Nix, and J. R. Patel, J. Appl. Phys. 94(6), 3757 (2003).
12.A. S. Budiman, N. Tamura, B. C. Valek, K. Gadre, J. Maiz, R. Spolenak, W. D. Nix, and J. R. Patel, Appl. Phys. Lett 88, 233515 (2006).
13.Y. T. Chiu, K. L. Lin, and Y. S. Lai, J. Appl. Phys. 111, 043517 (2012).
14.W. Y. Chen, T. C. Chiu, K. L. Lin, and Y. S. Lai, Intermetall. 26, 40 (2012).
15.W. Y. Chen, T. C. Chiu, K. L. Lin, A. T. Wu, W. L. Jang, C. L. Dong, and H. Y. Lee, Scripta Mater. 68(5), 317 (2013).
16.J. Y. He, K. L. Lin, and A. T. Wu, J. Alloy Comp. 619, 372 (2015).
17.S.C. Wang, Z.M. Zhu, and J. Starink, J. Microsc. 217, 174 (2005).
18.Y. W. Kim, D. H. Kim, H. I. Lee, and C. P. Hong, Scripta Mater. 38(6), 923 (1998).

Data & Media loading...


Article metrics loading...



A dislocation density of as high as 1017 /m2 in a tin strip, as revealed by high resolution transmission electron microscope, was induced by current stressing at 6.5 x 103 A/ cm2. The dislocations exist in terms of dislocation line, dislocation loop, and dislocation aggregates. Electron Backscattered Diffraction images reflect that the high dislocation density induced the formation of low deflection angle subgrains, high deflection angle Widmanstätten grains, and recrystallization. The recrystallization gave rise to grain refining.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd