Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. Inoue and K. Ohtaka, J. Phys. Soc. Jpn 52, 3853 (1983);
1.E. Hao and G. C. Schatz, J. Chem. Phys. 120, 357 (2004);
1.P. Johansson, H. Xu, and M. Käll, Phys. Rev. B 72, 035427 (2005);
1.E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, J. Phys. Chem. C 111, 13794 (2007);
1.K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, Nature 491, 574 (2012).
2.S. M. Nie and S. R. Emery, Science 275, 1102 (1997);
2.K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, Phys. Rev. Lett. 78, 1667 (1997).
3.M. Moskovits, Rev. Mod. Phys. 57, 783 (1985).
4.Y. S. Yamamoto, Y. Ozaki, and T. Itoh, J. Photochem. Photobio. C 21, 81 (2014).
5.C. M. Galloway, P. G. Etchegoin, and E. C. Le Ru, Phys. Rev. Lett. 103, 063003 (2009);
5.T. Itoh, Y. S. Yamamoto, H. Tamaru, V. Biju, N. Murase, and Y. Ozaki, Phys. Rev. B 87, 235408 (2013).
6.M. Moskovits and D. P. DiLella, J. Chem. Phys. 73, 6068 (1980);
6.M. Takase, H. Ajiki, Y. Mizumoto, K. Komeda, M. Nara, H. Nabika, S. Yasuda, H. Ishihara, and K. Murakoshi, Nat. Photonics 7, 550 (2013).
7.A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, Nano Lett. 13, 3281 (2013);
7.F. Nagasawa, M. Takase, and K. Murakoshi, J. Phys. Chem. Lett. 5, 14 (2014);
7.T. Itoh, Y. S. Yamamoto, H. Tamaru, V. Biju, S. Wakida, and Y. Ozaki, Phys. Rev. B 89, 195436 (2014).
8.For example; Y. Maruyama, M. Ishikawa, and M. Futamata, J. Phys. Chem. B 108, 673 (2004);
8.S. M. Stranahan and K. A. Willets, Nano Lett. 10, 3777 (2010);
8.Y. Kitahama, Y. Tanaka, T. Itoh, and Y. Ozaki, Phys. Chem. Chem. Phys. 12, 7457 (2010).
9.For example; Z. Wang and L. J. Rothberg, J. Phys. Chem. B 109, 3387 (2005);
9.T. Chen, H. Wang, G. Chen, Y. Wang, Y. Feng, W. S. Teo, T. Wu, and H. Chen, ACS Nano 4, 3087 (2010).
10.For example; A. Weiss and G. Haran, J. Phys. Chem. B 105, 12348 (2001);
10.E. Cortes, P. G. Etchegoin, E. C. Le Ru, A. Fainstein, Maria E. Vela, and R. C. Salvarezza, J. Am. Chem. Soc. 132, 18034 (2010).
11.For example; P. Xu, L. Kang, N. H. Mack, K. S. Schanze, X. Han, and H.-L. Wang, Sci. Rep. 3, 2997 (2013);
11.K. Kim, J.-Y. Choi, and K. S. Shin, J. Phys. Chem. C 118, 11397 (2014).
12.E. J. Bjerneld, F. Svedberg, P. Johansson, and M. Kall, J. Phys. Chem. A 108, 4187 (2004).
13.A. Kudelski and B. Pettinger, Chem. Phys. Lett. 321, 356 (2000).
14.K. F. Domke, D. Zhang, and B. Pettinger, J. Phys. Chem. C 111, 8611 (2007).
15.A. C. Ferrari and D. M. Basko, Nat. Nanotechnol. 8, 235 (2013).
16.T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, N. Marzari, K. S. Novoselov, A. K. Geim, and A. C. Ferrari, Phys. Rev. B 79, 205433 (2009).
17.(a) M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio, and R. Saito, Phys. Chem. Chem. Phys. 9, 1276 (2007);
17.(b) J. H. Chen, W. G. Cullen, C. Jang, M. S. Fuhrer, and E. D. Williams, Phys. Rev. Lett. 102, 236805 (2009);
17.(c) L. G. Cancado, A. Jorio, E. H. Martins Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, Nano Lett. 11, 3190 (2011);
17.(d) A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K. S. Novoselov, and C. Casiraghi, Nano Lett. 12, 3925 (2012);
17.(e) D. L. Matz, H. Sojoudi, S. Graham, and J. E. Pemberton, J. Phys. Chem. Lett. 6, 964 (2015).
18.K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, Ilhan A. Aksay, and R. Car, Nano Lett. 8, 36 (2008).
19.S. Eigler, F. Hof, M. Enzelberger-Heim, S. Grimm, P. Müller, and A.s Hirsch, J. Phys. Chem. C 118, 7698 (2014).
20.C. Casiraghi, A. C. Ferrari, and J. Robertson, Phys. Rev. B 72, 085401 (2005);
20.Z. Luo, T. Yu, Z. Ni, S. Lim, H. Hu, J. Shang, L. Liu, Z. Shen, and J. Lin, J. Phys. Chem. C 115, 1422 (2011).
21.G. Abrasonis, R. Gago, M. Vinnichenko, U. Kreissig, A. Kolitsch, and W. Möller, Phys. Rev. B 73, 125427 (2006).
22.L. Wang, J. Zhao, Y-.Y. Sun, and S. B. Zhang, J. Chem. Phys. 135, 184503 (2011);
22.A. J. Page, C. P. Chou, B. Q. Pham, H. A. Witek, S. Irle, and K. Morokuma, Phys. Chem. Chem. Phys. 15, 3725 (2013).
23.S. N. Shirodkar and U. V. Waghmare, Phys. Rev. B 86, 165401 (2012).
24.F. Negri, E. d. Donato, M. Tommasini, C. Castiglioni, G. Zerbi, and K. Müllen, J. Chem. Phys. 120, 11889 (2004).
25.P. Lee and D. Misel, J. Phys. Chem. 86, 3391 (1982).
26.T. Itoh, Y. Kikkawa, K. Yoshida, K. Hashimoto, V. Biju, M. Ishikawa, and Y. Ozaki, J. Photochem. Photobio. A 183, 322 (2006).
27.K. Yoshida, T. Itoh, H. Tamaru, V. Biju, M. Ishikawa, and Y. Ozaki, Phys. Rev. B 81, 115406 (2010).
28.T. Itoh, M. Iga, H. Tamaru, K. Yoshida, V. Biju, and M. Ishikawa, J. Chem. Phys. 136, 024703 (2012).
29.S. Shim, C. M. Stuart, and R. A. Mathies, ChemPhysChem 9, 697 (2008).
30.J. Zhang, X. Li, X. Sun, and Y. Li, J. Phys. Chem. B 109, 12544 (2005).
31.M. V. Canamares, C. Chenal, R. L. Birke, and J. R. Lombardi, J. Phys. Chem. C 112, 20295 (2008).
32.T. Itoh, H. Yoshikawa, K. Yoshida, V. Biju, and M. Ishikawa, J. Chem. Phys. 130, 214706 (2009);
32.T. Itoh, H. Yoshikawa, K. Yoshida, V. Biju, and M. Ishikawa, J. Chem. Phys. 133, 124704 (2010).
33.P. Venezuela, M. Lazzeri, and F. Mauri, Phys. Rev. B 84, 035433 (2011).
34.T. López-Ri´os, É. Sandré, S. Leclercq, and É. Sauvain, Phys. Rev. Lett. 76, 4935 (1996).
35.N. Bonini, M. Lazzeri, N. Marzari, and F. Mauri, Phys. Rev. Lett. 99, 176802 (2007).
36.L. G. Cançado, A. Jorio, and M. A Pimenta, Phys. Rev. B 76, 064304 (2007).
37.E. S. Thrall, A. C. Crowther, Z. Yu, and L. E. Brus, Nano Lett. 12, 1571 (2012).
38.E. H. M. Ferreira, M. V. O. Moutinho, F. Stavale, M. M. Lucchese, R. B. Capaz, C. A. Achete, and A. Jorio, Phys. Rev. B 82, 125429 (2010).
39.F. Tuinstra and J. L. Koenig, J. Chem. Phys. 53, 1126 (1970).
40.A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).
41.A. C. Ferrari, S. E. Rodil, and J. Robertson, Phys. Rev. B 67, 155306 (2003).
42.C. Mapelli, C. Castiglioni, and G. Zerbi, Phys. Rev. B 60, 12710 (1999).
43.T. Fujimori, K. Urita, T. Ohba, H. Kanoh, and K. Kaneko, J. Am. Chem. Soc. 132, 6764 (2010).

Data & Media loading...


Article metrics loading...



We evaluate spectral changes in surface enhanced resonance Raman scattering (SERRS) of near-single dye molecules in hotspots of single Ag nanoparticle (NP) dimers. During the laser excitation, surface enhance florescence (SEF) of dye disappeared and the number of SERRS lines decreased until finally ca. two lines remained around 1600 and 1350 cm−1, those are evidence of and lines of single 2carbon clusters. Analysis of the and line intensity ratios reveals the temporal fluctuation in the crystallite size of the clusters within several angstroms; whereas, broadening and splitting in the lines enable us for identifying directly the dynamics of various defects in the clusters. This analysis reveals that the detailed fluctuations of single 2carbon clusters, which would be impossible to gain with other microscopic methods.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd