Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/12/10.1063/1.4937936
1.
1.M. Inoue and K. Ohtaka, J. Phys. Soc. Jpn 52, 3853 (1983);
http://dx.doi.org/10.1143/JPSJ.52.3853
1.E. Hao and G. C. Schatz, J. Chem. Phys. 120, 357 (2004);
http://dx.doi.org/10.1063/1.1629280
1.P. Johansson, H. Xu, and M. Käll, Phys. Rev. B 72, 035427 (2005);
http://dx.doi.org/10.1103/PhysRevB.72.035427
1.E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, J. Phys. Chem. C 111, 13794 (2007);
http://dx.doi.org/10.1021/jp0687908
1.K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, Nature 491, 574 (2012).
http://dx.doi.org/10.1038/nature11653
2.
2.S. M. Nie and S. R. Emery, Science 275, 1102 (1997);
http://dx.doi.org/10.1126/science.275.5303.1102
2.K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, Phys. Rev. Lett. 78, 1667 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.1667
3.
3.M. Moskovits, Rev. Mod. Phys. 57, 783 (1985).
http://dx.doi.org/10.1103/RevModPhys.57.783
4.
4.Y. S. Yamamoto, Y. Ozaki, and T. Itoh, J. Photochem. Photobio. C 21, 81 (2014).
http://dx.doi.org/10.1016/j.jphotochemrev.2014.10.001
5.
5.C. M. Galloway, P. G. Etchegoin, and E. C. Le Ru, Phys. Rev. Lett. 103, 063003 (2009);
http://dx.doi.org/10.1103/PhysRevLett.103.063003
5.T. Itoh, Y. S. Yamamoto, H. Tamaru, V. Biju, N. Murase, and Y. Ozaki, Phys. Rev. B 87, 235408 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.235408
6.
6.M. Moskovits and D. P. DiLella, J. Chem. Phys. 73, 6068 (1980);
http://dx.doi.org/10.1063/1.440142
6.M. Takase, H. Ajiki, Y. Mizumoto, K. Komeda, M. Nara, H. Nabika, S. Yasuda, H. Ishihara, and K. Murakoshi, Nat. Photonics 7, 550 (2013).
http://dx.doi.org/10.1038/nphoton.2013.129
7.
7.A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, Nano Lett. 13, 3281 (2013);
http://dx.doi.org/10.1021/nl4014887
7.F. Nagasawa, M. Takase, and K. Murakoshi, J. Phys. Chem. Lett. 5, 14 (2014);
http://dx.doi.org/10.1021/jz402243a
7.T. Itoh, Y. S. Yamamoto, H. Tamaru, V. Biju, S. Wakida, and Y. Ozaki, Phys. Rev. B 89, 195436 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.195436
8.
8.For example; Y. Maruyama, M. Ishikawa, and M. Futamata, J. Phys. Chem. B 108, 673 (2004);
http://dx.doi.org/10.1021/jp035838y
8.S. M. Stranahan and K. A. Willets, Nano Lett. 10, 3777 (2010);
http://dx.doi.org/10.1021/nl102559d
8.Y. Kitahama, Y. Tanaka, T. Itoh, and Y. Ozaki, Phys. Chem. Chem. Phys. 12, 7457 (2010).
http://dx.doi.org/10.1039/c000824a
9.
9.For example; Z. Wang and L. J. Rothberg, J. Phys. Chem. B 109, 3387 (2005);
http://dx.doi.org/10.1021/jp0460947
9.T. Chen, H. Wang, G. Chen, Y. Wang, Y. Feng, W. S. Teo, T. Wu, and H. Chen, ACS Nano 4, 3087 (2010).
http://dx.doi.org/10.1021/nn100269v
10.
10.For example; A. Weiss and G. Haran, J. Phys. Chem. B 105, 12348 (2001);
http://dx.doi.org/10.1021/jp0126863
10.E. Cortes, P. G. Etchegoin, E. C. Le Ru, A. Fainstein, Maria E. Vela, and R. C. Salvarezza, J. Am. Chem. Soc. 132, 18034 (2010).
http://dx.doi.org/10.1021/ja108989b
11.
11.For example; P. Xu, L. Kang, N. H. Mack, K. S. Schanze, X. Han, and H.-L. Wang, Sci. Rep. 3, 2997 (2013);
11.K. Kim, J.-Y. Choi, and K. S. Shin, J. Phys. Chem. C 118, 11397 (2014).
http://dx.doi.org/10.1021/jp5015115
12.
12.E. J. Bjerneld, F. Svedberg, P. Johansson, and M. Kall, J. Phys. Chem. A 108, 4187 (2004).
http://dx.doi.org/10.1021/jp037004l
13.
13.A. Kudelski and B. Pettinger, Chem. Phys. Lett. 321, 356 (2000).
http://dx.doi.org/10.1016/S0009-2614(00)00330-4
14.
14.K. F. Domke, D. Zhang, and B. Pettinger, J. Phys. Chem. C 111, 8611 (2007).
http://dx.doi.org/10.1021/jp071519l
15.
15.A. C. Ferrari and D. M. Basko, Nat. Nanotechnol. 8, 235 (2013).
http://dx.doi.org/10.1038/nnano.2013.46
16.
16.T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, N. Marzari, K. S. Novoselov, A. K. Geim, and A. C. Ferrari, Phys. Rev. B 79, 205433 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.205433
17.
17.(a) M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio, and R. Saito, Phys. Chem. Chem. Phys. 9, 1276 (2007);
http://dx.doi.org/10.1039/b613962k
17.(b) J. H. Chen, W. G. Cullen, C. Jang, M. S. Fuhrer, and E. D. Williams, Phys. Rev. Lett. 102, 236805 (2009);
http://dx.doi.org/10.1103/PhysRevLett.102.236805
17.(c) L. G. Cancado, A. Jorio, E. H. Martins Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, Nano Lett. 11, 3190 (2011);
http://dx.doi.org/10.1021/nl201432g
17.(d) A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K. S. Novoselov, and C. Casiraghi, Nano Lett. 12, 3925 (2012);
http://dx.doi.org/10.1021/nl300901a
17.(e) D. L. Matz, H. Sojoudi, S. Graham, and J. E. Pemberton, J. Phys. Chem. Lett. 6, 964 (2015).
http://dx.doi.org/10.1021/jz5027272
18.
18.K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, Ilhan A. Aksay, and R. Car, Nano Lett. 8, 36 (2008).
http://dx.doi.org/10.1021/nl071822y
19.
19.S. Eigler, F. Hof, M. Enzelberger-Heim, S. Grimm, P. Müller, and A.s Hirsch, J. Phys. Chem. C 118, 7698 (2014).
http://dx.doi.org/10.1021/jp500580g
20.
20.C. Casiraghi, A. C. Ferrari, and J. Robertson, Phys. Rev. B 72, 085401 (2005);
http://dx.doi.org/10.1103/PhysRevB.72.085401
20.Z. Luo, T. Yu, Z. Ni, S. Lim, H. Hu, J. Shang, L. Liu, Z. Shen, and J. Lin, J. Phys. Chem. C 115, 1422 (2011).
http://dx.doi.org/10.1021/jp107109h
21.
21.G. Abrasonis, R. Gago, M. Vinnichenko, U. Kreissig, A. Kolitsch, and W. Möller, Phys. Rev. B 73, 125427 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.125427
22.
22.L. Wang, J. Zhao, Y-.Y. Sun, and S. B. Zhang, J. Chem. Phys. 135, 184503 (2011);
http://dx.doi.org/10.1063/1.3658859
22.A. J. Page, C. P. Chou, B. Q. Pham, H. A. Witek, S. Irle, and K. Morokuma, Phys. Chem. Chem. Phys. 15, 3725 (2013).
http://dx.doi.org/10.1039/c3cp00094j
23.
23.S. N. Shirodkar and U. V. Waghmare, Phys. Rev. B 86, 165401 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.165401
24.
24.F. Negri, E. d. Donato, M. Tommasini, C. Castiglioni, G. Zerbi, and K. Müllen, J. Chem. Phys. 120, 11889 (2004).
http://dx.doi.org/10.1063/1.1710853
25.
25.P. Lee and D. Misel, J. Phys. Chem. 86, 3391 (1982).
http://dx.doi.org/10.1021/j100214a025
26.
26.T. Itoh, Y. Kikkawa, K. Yoshida, K. Hashimoto, V. Biju, M. Ishikawa, and Y. Ozaki, J. Photochem. Photobio. A 183, 322 (2006).
http://dx.doi.org/10.1016/j.jphotochem.2006.06.031
27.
27.K. Yoshida, T. Itoh, H. Tamaru, V. Biju, M. Ishikawa, and Y. Ozaki, Phys. Rev. B 81, 115406 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.115406
28.
28.T. Itoh, M. Iga, H. Tamaru, K. Yoshida, V. Biju, and M. Ishikawa, J. Chem. Phys. 136, 024703 (2012).
http://dx.doi.org/10.1063/1.3675567
29.
29.S. Shim, C. M. Stuart, and R. A. Mathies, ChemPhysChem 9, 697 (2008).
http://dx.doi.org/10.1002/cphc.200700856
30.
30.J. Zhang, X. Li, X. Sun, and Y. Li, J. Phys. Chem. B 109, 12544 (2005).
http://dx.doi.org/10.1021/jp050471d
31.
31.M. V. Canamares, C. Chenal, R. L. Birke, and J. R. Lombardi, J. Phys. Chem. C 112, 20295 (2008).
http://dx.doi.org/10.1021/jp807807j
32.
32.T. Itoh, H. Yoshikawa, K. Yoshida, V. Biju, and M. Ishikawa, J. Chem. Phys. 130, 214706 (2009);
http://dx.doi.org/10.1063/1.3146788
32.T. Itoh, H. Yoshikawa, K. Yoshida, V. Biju, and M. Ishikawa, J. Chem. Phys. 133, 124704 (2010).
http://dx.doi.org/10.1063/1.3489920
33.
33.P. Venezuela, M. Lazzeri, and F. Mauri, Phys. Rev. B 84, 035433 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.035433
34.
34.T. López-Ri´os, É. Sandré, S. Leclercq, and É. Sauvain, Phys. Rev. Lett. 76, 4935 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.4935
35.
35.N. Bonini, M. Lazzeri, N. Marzari, and F. Mauri, Phys. Rev. Lett. 99, 176802 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.176802
36.
36.L. G. Cançado, A. Jorio, and M. A Pimenta, Phys. Rev. B 76, 064304 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.064304
37.
37.E. S. Thrall, A. C. Crowther, Z. Yu, and L. E. Brus, Nano Lett. 12, 1571 (2012).
http://dx.doi.org/10.1021/nl204446h
38.
38.E. H. M. Ferreira, M. V. O. Moutinho, F. Stavale, M. M. Lucchese, R. B. Capaz, C. A. Achete, and A. Jorio, Phys. Rev. B 82, 125429 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.125429
39.
39.F. Tuinstra and J. L. Koenig, J. Chem. Phys. 53, 1126 (1970).
http://dx.doi.org/10.1063/1.1674108
40.
40.A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.14095
41.
41.A. C. Ferrari, S. E. Rodil, and J. Robertson, Phys. Rev. B 67, 155306 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.155306
42.
42.C. Mapelli, C. Castiglioni, and G. Zerbi, Phys. Rev. B 60, 12710 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.12710
43.
43.T. Fujimori, K. Urita, T. Ohba, H. Kanoh, and K. Kaneko, J. Am. Chem. Soc. 132, 6764 (2010).
http://dx.doi.org/10.1021/ja100760m
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/12/10.1063/1.4937936
Loading
/content/aip/journal/adva/5/12/10.1063/1.4937936
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/12/10.1063/1.4937936
2015-12-09
2016-12-08

Abstract

We evaluate spectral changes in surface enhanced resonance Raman scattering (SERRS) of near-single dye molecules in hotspots of single Ag nanoparticle (NP) dimers. During the laser excitation, surface enhance florescence (SEF) of dye disappeared and the number of SERRS lines decreased until finally ca. two lines remained around 1600 and 1350 cm−1, those are evidence of and lines of single 2carbon clusters. Analysis of the and line intensity ratios reveals the temporal fluctuation in the crystallite size of the clusters within several angstroms; whereas, broadening and splitting in the lines enable us for identifying directly the dynamics of various defects in the clusters. This analysis reveals that the detailed fluctuations of single 2carbon clusters, which would be impossible to gain with other microscopic methods.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/12/1.4937936.html;jsessionid=XFWMSiUfsIq65JhMTbjqoO5P.x-aip-live-06?itemId=/content/aip/journal/adva/5/12/10.1063/1.4937936&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/12/10.1063/1.4937936&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/12/10.1063/1.4937936'
Right1,Right2,Right3,