Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/12/10.1063/1.4938085
1.
1.V.L. Kuznetsov, Mrs Bull. 25, 15 (2011).
2.
2.M. Carotta, M. Ferroni, D. Gnani, V. Guidi, M. Merli, G. Martinelli, M. Casale, and M. Notaro, Sensors Actuators B Chem. 58, 310 (1999).
http://dx.doi.org/10.1016/S0925-4005(99)00148-3
3.
3.R.K. Sharma, M.C. Bhatnagar, and G.L. Sharma, Appl. Surf. Sci. 92, 647 (1996).
http://dx.doi.org/10.1016/0169-4332(95)00311-8
4.
4.M. Anpo and M. Takeuchi, J. Catal. 505516 (2003).
http://dx.doi.org/10.1016/S0021-9517(02)00104-5
5.
5.B.N. Joshi, H. Yoon, M.F. a. M. van Hest, and S.S. Yoon, J. Am. Ceram. Soc. 96, 2623 (2013).
http://dx.doi.org/10.1111/jace.12336
6.
6.Z. Zhang, C.-C. Wang, R. Zakaria, and J.Y. Ying, J. Phys. Chem. B 102, 10871 (1998).
http://dx.doi.org/10.1021/jp982948+
7.
7.X. , X. Mou, J. Wu, D. Zhang, L. Zhang, F. Huang, F. Xu, and S. Huang, Adv. Funct. Mater. 20, 509 (2010).
http://dx.doi.org/10.1002/adfm.200901292
8.
8.J. Niemelä, H. Yamauchi, and M. Karppinen, Thin Solid Films 551, 19 (2014).
http://dx.doi.org/10.1016/j.tsf.2013.11.043
9.
9.Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, T. Shimada, and T. Hasegawa, Appl. Phys. Lett. 86, 1 (2005).
http://dx.doi.org/10.1063/1.1949728
10.
10.D. Reyes-Coronado, G. Rodríguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. de Coss, and G. Oskam, Nanotechnology 19, 145605 (2008).
http://dx.doi.org/10.1088/0957-4484/19/14/145605
11.
11.S. Sahoo, a. K. Arora, and V. Sridharan, J. Phys. Chem. C 113, 16927 (2009).
http://dx.doi.org/10.1021/jp9046193
12.
12.D. Georgescu, L. Baia, O. Ersen, M. Baia, and S. Simon, J. Raman Spectrosc. 43, 876 (2012).
http://dx.doi.org/10.1002/jrs.3103
13.
13.X.J. Liu, L.K. Pan, Z. Sun, Y.M. Chen, X.X. Yang, L.W. Yang, Z.F. Zhou, and C.Q. Sun, J. Appl. Phys. 110 (2011).
14.
14.B.K. Kaleji, R. Sarraf-Mamoory, and A. Fujishima, Mater. Chem. Phys. 132, 210 (2012).
http://dx.doi.org/10.1016/j.matchemphys.2011.11.034
15.
15.L. Zhao, X. Zhao, J. Liu, A. Zhang, D. Wang, and B. Wei, J. Sol-Gel Sci. Technol. 53, 475 (2010).
http://dx.doi.org/10.1007/s10971-009-2102-3
16.
16.L.R. Doolittle, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 15, 227 (1986).
http://dx.doi.org/10.1016/0168-583X(86)90291-0
17.
17.A.L. Patterson, Phys. Rev. 56, 978 (1939).
http://dx.doi.org/10.1103/PhysRev.56.978
18.
18.J. Tauc, R. Grigorov, and a Vancu, Phys. Status Solidi 15, 627 (1966).
http://dx.doi.org/10.1002/pssb.19660150224
19.
19.Z. Wang, U. Helmersson, and P.-O. Käll, Thin Solid Films 405, 50 (2002).
http://dx.doi.org/10.1016/S0040-6090(01)01767-9
20.
20.T. Ohsaka, F. Izumi, and Y. Fujiki, J. Raman Spectrosc. 7, 321 (1978).
http://dx.doi.org/10.1002/jrs.1250070606
21.
21.D. Bersani, P.P. Lottici, and X.Z. Ding, Appl. Phys. Lett. 72, 73 (1998).
http://dx.doi.org/10.1063/1.120648
22.
22.H. Richter, Z.P. Wang, and L. Ley, Solid State Commun. 39, 625 (1981).
http://dx.doi.org/10.1016/0038-1098(81)90337-9
23.
23.W.F. Zhang, Y.L. He, M.S. Zhang, Z. Yin, and Q. Chen, J. Phys. D. Appl. Phys. 33, 912 (2000).
http://dx.doi.org/10.1088/0022-3727/33/8/305
24.
24.G.C. Vásquez, M.A. Peche-Herrero, D. Maestre, B. Alemán, J. Ramírez-Castellanos, A. Cremades, J.M. González-Calbet, and J. Piqueras, J. Mater. Chem. C 2, 10377 (2014).
http://dx.doi.org/10.1039/C4TC02099E
25.
25.J.C. Parker and R.W. Siegel, J. Mater. Res. 5, 1246 (1990).
http://dx.doi.org/10.1557/JMR.1990.1246
26.
26.S.K. Gautam, F. Singh, I. Sulania, R.G. Singh, P.K. Kulriya, and E. Pippel, J. Appl. Phys. 115, 143504 (2014).
http://dx.doi.org/10.1063/1.4868079
27.
27.F. Singh, R.G. Singh, V. Kumar, S.A. Khan, and J.C. Pivin, J. Appl. Phys. 110, 083520 (2011).
http://dx.doi.org/10.1063/1.3651638
28.
28.X.X. Yang, J.W. Li, Z.F. Zhou, Y. Wang, L.W. Yang, W.T. Zheng, and C.Q. Sun, Nanoscale 4, 502 (2012).
http://dx.doi.org/10.1039/C1NR11280E
29.
29.P. Kumar, N. Saxena, V. Gupta, F. Singh, and A. Agarwal, J. Appl. Phys. 116, 043517 (2014).
http://dx.doi.org/10.1063/1.4891452
30.
30.K. Gao, Phys. Status Solidi Basic Res. 244, 2597 (2007).
http://dx.doi.org/10.1002/pssb.200743073
31.
31.K.R. Zhu, M.S. Zhang, Q. Chen, and Z. Yin, Phys. Lett. Sect. A Gen. At. Solid State Phys. 340, 220 (2005).
32.
32.Y. Yuan, L. Ling, X. Wang, M. Wang, R. Gu, and J. Yao, J. Raman Spectrosc. 38, 1280 (2007).
http://dx.doi.org/10.1002/jrs.1762
33.
33.O. Frank, M. Zukalova, B. Laskova, J. Kürti, J. Koltai, and L. Kavan, Phys. Chem. Chem. Phys. 14, 14567 (2012).
http://dx.doi.org/10.1039/c2cp42763j
34.
34.D. Morris, Y. Dou, J. Rebane, C. Mitchell, R. Egdell, D. Law, a. Vittadini, and M. Casarin, Phys. Rev. B 61, 13445 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.13445
35.
35.W. Hu, Y. Liu, R.L. Withers, T.J. Frankcombe, L. Norén, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, and J. Wong-Leung, Nat. Mater. 12, 821 (2013).
http://dx.doi.org/10.1038/nmat3691
36.
36.M.Z. Atashbar, H.T. Sun, B. Gong, W. Wlodarski, and R. Lamb, Thin Solid Films 326, 238 (1998).
http://dx.doi.org/10.1016/S0040-6090(98)00534-3
37.
37.S. Kucheyev, T. van Buuren, T. Baumann, J. Satcher, T. Willey, R. Meulenberg, T. Felter, J. Poco, S. Gammon, and L. Terminello, Phys. Rev. B 69, 1 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.245102
38.
38.F.M.F. de Groot, J.C. Fuggle, B.T. Thole, and G. a. Sawatzky, Phys. Rev. B 42, 5459 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.5459
39.
39.H.A. Hamedani, N.K. Allam, M. a. El-Sayed, M. a. Khaleel, H. Garmestani, and F.M. Alamgir, Adv. Funct. Mater. 24, 6783 (2014).
http://dx.doi.org/10.1002/adfm.201401760
40.
40.R. Bouchet, a. Weibel, P. Knauth, G. Mountjoy, and a. V. Chadwick, Chem. Mater. 15, 4996 (2003).
http://dx.doi.org/10.1021/cm034640n
41.
41.C.R. Aita, Appl. Phys. Lett. 90, 213112 (2007).
http://dx.doi.org/10.1063/1.2742914
42.
42.T. Ohsaka, J. Phys. Soc. Japan 48, 1661 (1980).
http://dx.doi.org/10.1143/JPSJ.48.1661
43.
43.Y.L. Du, Y. Deng, and M.S. Zhang, J. Phys. Chem. Solids 67, 2405 (2006).
http://dx.doi.org/10.1016/j.jpcs.2006.06.020
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/12/10.1063/1.4938085
Loading
/content/aip/journal/adva/5/12/10.1063/1.4938085
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/12/10.1063/1.4938085
2015-12-11
2016-12-03

Abstract

The effect of Niobiumdoping and size of crystallites on highly transparent nano-crystalline NiobiumdopedTitanium Dioxide (NTO) thin films with stable anatase phase are reported. The Nbdoping concentration is varied within the solubility limit in TiO lattice. Films were annealed in controlled environment for improving the crystallinity and size of crystallites. Elemental and thickness analysis were carried out using Rutherford backscattering spectrometry and cross sectional field emission scanning electron microscopy. Structural characteristics reveal a substitutional incorporation of Nb+5 in the TiO lattice which inhibits the anatase crystallites growth with increasing the doping percentage. The micro-Raman (MR) spectra of films with small size crystallites shows stiffening of about 4 cm−1 for the mode and is ascribed to phonon confinement and non-stoichiometry. In contrast, B mode exhibits a large anomalous softening of 20 cm−1 with asymmetrical broadening; which was not reported for the case of pure TiO crystallites. This anomalous behaviour is explained by contraction of the apical Ti-O bonds at the surface upon substitutional Nb5+doping induced reduction of Ti4+ ions also known as hetero-coordination effect. The proposed hypotheses is manifested through studying the electronic structure and phonon dynamics by performing the near edge x-ray absorption fine structure(NEXAFS) and temperature dependent MR down to liquid nitrogen temperature on pure and 2.5 at.% doped NTO films, respectively.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/12/1.4938085.html;jsessionid=xiSVvg5AtRInYj1d7XpPspwT.x-aip-live-06?itemId=/content/aip/journal/adva/5/12/10.1063/1.4938085&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/12/10.1063/1.4938085&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/12/10.1063/1.4938085'
Right1,Right2,Right3,