Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.V.L. Kuznetsov, Mrs Bull. 25, 15 (2011).
2.M. Carotta, M. Ferroni, D. Gnani, V. Guidi, M. Merli, G. Martinelli, M. Casale, and M. Notaro, Sensors Actuators B Chem. 58, 310 (1999).
3.R.K. Sharma, M.C. Bhatnagar, and G.L. Sharma, Appl. Surf. Sci. 92, 647 (1996).
4.M. Anpo and M. Takeuchi, J. Catal. 505516 (2003).
5.B.N. Joshi, H. Yoon, M.F. a. M. van Hest, and S.S. Yoon, J. Am. Ceram. Soc. 96, 2623 (2013).
6.Z. Zhang, C.-C. Wang, R. Zakaria, and J.Y. Ying, J. Phys. Chem. B 102, 10871 (1998).
7.X. , X. Mou, J. Wu, D. Zhang, L. Zhang, F. Huang, F. Xu, and S. Huang, Adv. Funct. Mater. 20, 509 (2010).
8.J. Niemelä, H. Yamauchi, and M. Karppinen, Thin Solid Films 551, 19 (2014).
9.Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, T. Shimada, and T. Hasegawa, Appl. Phys. Lett. 86, 1 (2005).
10.D. Reyes-Coronado, G. Rodríguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. de Coss, and G. Oskam, Nanotechnology 19, 145605 (2008).
11.S. Sahoo, a. K. Arora, and V. Sridharan, J. Phys. Chem. C 113, 16927 (2009).
12.D. Georgescu, L. Baia, O. Ersen, M. Baia, and S. Simon, J. Raman Spectrosc. 43, 876 (2012).
13.X.J. Liu, L.K. Pan, Z. Sun, Y.M. Chen, X.X. Yang, L.W. Yang, Z.F. Zhou, and C.Q. Sun, J. Appl. Phys. 110 (2011).
14.B.K. Kaleji, R. Sarraf-Mamoory, and A. Fujishima, Mater. Chem. Phys. 132, 210 (2012).
15.L. Zhao, X. Zhao, J. Liu, A. Zhang, D. Wang, and B. Wei, J. Sol-Gel Sci. Technol. 53, 475 (2010).
16.L.R. Doolittle, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 15, 227 (1986).
17.A.L. Patterson, Phys. Rev. 56, 978 (1939).
18.J. Tauc, R. Grigorov, and a Vancu, Phys. Status Solidi 15, 627 (1966).
19.Z. Wang, U. Helmersson, and P.-O. Käll, Thin Solid Films 405, 50 (2002).
20.T. Ohsaka, F. Izumi, and Y. Fujiki, J. Raman Spectrosc. 7, 321 (1978).
21.D. Bersani, P.P. Lottici, and X.Z. Ding, Appl. Phys. Lett. 72, 73 (1998).
22.H. Richter, Z.P. Wang, and L. Ley, Solid State Commun. 39, 625 (1981).
23.W.F. Zhang, Y.L. He, M.S. Zhang, Z. Yin, and Q. Chen, J. Phys. D. Appl. Phys. 33, 912 (2000).
24.G.C. Vásquez, M.A. Peche-Herrero, D. Maestre, B. Alemán, J. Ramírez-Castellanos, A. Cremades, J.M. González-Calbet, and J. Piqueras, J. Mater. Chem. C 2, 10377 (2014).
25.J.C. Parker and R.W. Siegel, J. Mater. Res. 5, 1246 (1990).
26.S.K. Gautam, F. Singh, I. Sulania, R.G. Singh, P.K. Kulriya, and E. Pippel, J. Appl. Phys. 115, 143504 (2014).
27.F. Singh, R.G. Singh, V. Kumar, S.A. Khan, and J.C. Pivin, J. Appl. Phys. 110, 083520 (2011).
28.X.X. Yang, J.W. Li, Z.F. Zhou, Y. Wang, L.W. Yang, W.T. Zheng, and C.Q. Sun, Nanoscale 4, 502 (2012).
29.P. Kumar, N. Saxena, V. Gupta, F. Singh, and A. Agarwal, J. Appl. Phys. 116, 043517 (2014).
30.K. Gao, Phys. Status Solidi Basic Res. 244, 2597 (2007).
31.K.R. Zhu, M.S. Zhang, Q. Chen, and Z. Yin, Phys. Lett. Sect. A Gen. At. Solid State Phys. 340, 220 (2005).
32.Y. Yuan, L. Ling, X. Wang, M. Wang, R. Gu, and J. Yao, J. Raman Spectrosc. 38, 1280 (2007).
33.O. Frank, M. Zukalova, B. Laskova, J. Kürti, J. Koltai, and L. Kavan, Phys. Chem. Chem. Phys. 14, 14567 (2012).
34.D. Morris, Y. Dou, J. Rebane, C. Mitchell, R. Egdell, D. Law, a. Vittadini, and M. Casarin, Phys. Rev. B 61, 13445 (2000).
35.W. Hu, Y. Liu, R.L. Withers, T.J. Frankcombe, L. Norén, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, and J. Wong-Leung, Nat. Mater. 12, 821 (2013).
36.M.Z. Atashbar, H.T. Sun, B. Gong, W. Wlodarski, and R. Lamb, Thin Solid Films 326, 238 (1998).
37.S. Kucheyev, T. van Buuren, T. Baumann, J. Satcher, T. Willey, R. Meulenberg, T. Felter, J. Poco, S. Gammon, and L. Terminello, Phys. Rev. B 69, 1 (2004).
38.F.M.F. de Groot, J.C. Fuggle, B.T. Thole, and G. a. Sawatzky, Phys. Rev. B 42, 5459 (1990).
39.H.A. Hamedani, N.K. Allam, M. a. El-Sayed, M. a. Khaleel, H. Garmestani, and F.M. Alamgir, Adv. Funct. Mater. 24, 6783 (2014).
40.R. Bouchet, a. Weibel, P. Knauth, G. Mountjoy, and a. V. Chadwick, Chem. Mater. 15, 4996 (2003).
41.C.R. Aita, Appl. Phys. Lett. 90, 213112 (2007).
42.T. Ohsaka, J. Phys. Soc. Japan 48, 1661 (1980).
43.Y.L. Du, Y. Deng, and M.S. Zhang, J. Phys. Chem. Solids 67, 2405 (2006).

Data & Media loading...


Article metrics loading...



The effect of Niobiumdoping and size of crystallites on highly transparent nano-crystalline NiobiumdopedTitanium Dioxide (NTO) thin films with stable anatase phase are reported. The Nbdoping concentration is varied within the solubility limit in TiO lattice. Films were annealed in controlled environment for improving the crystallinity and size of crystallites. Elemental and thickness analysis were carried out using Rutherford backscattering spectrometry and cross sectional field emission scanning electron microscopy. Structural characteristics reveal a substitutional incorporation of Nb+5 in the TiO lattice which inhibits the anatase crystallites growth with increasing the doping percentage. The micro-Raman (MR) spectra of films with small size crystallites shows stiffening of about 4 cm−1 for the mode and is ascribed to phonon confinement and non-stoichiometry. In contrast, B mode exhibits a large anomalous softening of 20 cm−1 with asymmetrical broadening; which was not reported for the case of pure TiO crystallites. This anomalous behaviour is explained by contraction of the apical Ti-O bonds at the surface upon substitutional Nb5+doping induced reduction of Ti4+ ions also known as hetero-coordination effect. The proposed hypotheses is manifested through studying the electronic structure and phonon dynamics by performing the near edge x-ray absorption fine structure(NEXAFS) and temperature dependent MR down to liquid nitrogen temperature on pure and 2.5 at.% doped NTO films, respectively.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd