Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.K. Uetani, S. Ata, S. Tomonoh, T. Yamada, M. Yumura, and K. Hata, Adv. Mater. 26, 5857-5862 (2014).
2.G. Xin, H. Sun, T. Hu, H. R. Fard, X. Sun, N. Koratkar, T. Borca-Tasciuc, and J. Lian, Adv. Mater. 26, 4521-4526 (2014).
3.M. Singh, R. Asthana, C. E. Smith, and A. L. Gyekenyesi, in Mater. Sust. Dev.: Cer. Engr. Sci. Proc. 2010, edited by H.-T. Lin, A. Gyekenyesi, L. An, S. Mathur, and T. Ohji (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2010), Vol. 31.
4.P. M. Geffroy, J. D. Mathias, and J. F. Silvain, Adv. Eng. Mater. 10, 400-405 (2008).
5.S. V. Garimella, V. Singhal, and L. Dong, IEEE Proc. 94, 1534-1548 (2006).
6.K. Tanaka, S. Ogata, R. Kobayashi, T. Tamura, M. Kitsunezuka, and A. Shinma, J. App. Phys. 114, 193512 (2013).
7.C. Subramaniam, Y. Yasuda, S. Takeya, S. Ata, A. Nishizawa, D. Futaba, T. Yamada, and K. Hata, Nanoscale 6, 2669-2674 (2014).
8.A. Bhattacharya and R. L. Mahajan, J. Electron. Packag. 124, 155-163 (2002).
9.V. Carey and A. Shah, “The exergy cost of information processing: A comparison of computer-based technologies and biological systems,” J. Electron. Packag. 128, 346-352 (2006).
10.K. H. Baloch, N. Voskanian, and M. Bronsgeest, J. Cumings. Nat. Nano 7, 316-319 (2012).
11.C. Cheng, W. Fan, J. Cao, S.-G Ryu, J. Ji, C. P. Grigoropoulos, and Wu, J. ACS Nano 5, 10102-10107 (2011).
12.F. Incropera, J. Heat Trans. 110, 1097-1111 (1988).
13.S. Krishnamoorthy, MSc. Thesis, University of Illinois, Chicago, USA, 2008.
14.Y. Fu, N. Nabiollahi, T. Wang, S. Wang, Z. Hu, B. Carlberg, Y. Zhang, X. Wang, and J. Liu, Nanotechnology 23, 045304 (2012).
15.A. Fischer, T. Koprucki, K. Gärtner, M. L. Tietze, J. Brückner, B. Lüssem, K. Leo, A. Glitzky, and R. Scholz, Adv. Funct. Mater. 24, 3367-3374 (2014).
16.K. O’Donnell and X. Chen, Appl. Phys. lett. 58, 2924-2926 (1991).
17.A. K. Agarwal, S. Seshadri, and L. B. Rowland, IEEE Elect. Dev. Lett. 18, 592-594 (1997).
18.D. BuHanan, IEEE Trans. Elect. Dev. 16, 117-124 (1969).
19.G. Pananakakis, G. Ghibaudo, R. Kies, and C. Papadas, J. Appl. Phys. 78, 2635-2641 (1995).
20.M. Powell, C. Van Berkel, and J. Hughes, Appl. Phys. lett. 54, 1323-1325 (1989).
21.A. Vassighi and M. Sachdev, Thermal and Power Management of Integrated (Springer, Berlin, Germany, 2006).
22.S. S. Sapatnekar, IEEE Trans. Emerg. Sel. Topics Circuits Syst. 1, 5-18 (2011).
23.K. C. Otiaba, N. N. Ekere, R. Bhatti, S. Mallik, M. Alam, and E. H. Amalu, Microelectron. Reliab. 51, 2031-2043 (2011).
24.Y. Sun and J. A. Rogers, Adv. Mater. 19, 1897-1916 (2007).
25.S. Farsinezhad, A. Mohammadpour, A. N. Dalrymple, J. Geisinger, P. Kar, M. J. Brett, and K. Shankar, J. Nanosci. Nanotechnol. 13, 2885-2891 (2013).
26.G. F. Taylor, IEEE Int. Elect. Devices Meet., Tech. Dig., Hillsboro, USA (2013).
27.J. C. Ku, S. Ozdemir, G. Memik, and Y. Ismail, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 15, 592-604 (2007).
28.R. McGowen, C. A. Poirier, C. Bostak, J. Ignowski, M. Millican, W. H. Parks, and S. Naffziger, IEEE J. Solid-State Circuits 41, 229-237 (2006).
29.G. A. Torres Sevilla, M. T. Ghoneim, H. Fahad, J. P. Rojas, A. M. Hussain, and M. M. Hussain, ACS Nano 8, 9850-9856 (2014).
30.M. T. Ghoneim, M. A. Zidan, M. Y. Alnassar, A. N. Hanna, J. Kosel, K. N. Salama, and M. M. Hussain, Adv. Electron. Mater. 1, 1500045 (2015).
31.M. Ghoneim and M. M. Hussain, Appl. Phys. Lett. 107, 052904 (2015).
32.M. T. Ghoneim and M. M. Hussain, Electronics 4, 424-479 (2015).
33.J. P. Rojas, G. A. Torres Sevilla, N. Alfaraj, M. T. Ghoneim, A. T. Kutbee, A. Sridharan, and M. M. Hussain, ACS Nano 9, 52555263 (2015).
34.M. T. Ghoneim, N. Alfaraj, G. A. T. Sevilla, H. M. Fahad, and M. M. Hussain, IEEE 73rd Ann. Dev. Res. Conf. Columbus, Ohio, USA (2015).
35.M. Ghoneim, J. Rojas, A. Kutbee, A. Hanna, and M. Hussain, IEEE Int. Conf. Elect. Comp. Eng., Dhaka, Bangladesh (2014).
36.N. Einer-Jensen and M. Khorooshi, Exp. Brain Res. 130, 244-247 (2000).
37.M. Irmak, A. Korkmaz, and O. Erogul, Med. Hypotheses 63, 974-979 (2004).
38.D. Xu, H. Lu, L. Huang, S. Azuma, M. Kimata, and R. Uchida, IEEE Trans. Ind. Appl. 38, 1426-1431 (2002).
39.L. Condra, D. Das, N. Pendse, and M. G., IEEE Trans. Compon. Packag. Technol. 24, 721-728 (2001).
40.S. Im and K. Banerjee, IEEE Int. Electron Devices Meet., Tech. Dig., San Francisco, USA (2000).
41.J. P. Rojas, M. T. Ghoneim, C. D. Young, and M. M. Hussain, IEEE Trans. Electr. Dev. 60, 3305-3309 (2013).
42.M. T. Ghoneim, J. P. Rojas, A. M. Hussain, and M. M. Hussain, Phys. Status Solidi RRL 8, 163-166 (2014).
43.M. Ghoneim, A. Kutbee, F. G. Nasseri, G. Bersuker, and M. M. Hussain, Appl. Phys. Lett. 104, 234104 (2014).
44.J. P. Rojas, G. T. Sevilla, and M. M. Hussain, Appl. Phys. Lett. 102, 064102 (2013).
45.J. M. Nassar, A. M. Hussain, J. P. Rojas, and M. M. Hussain, Phys. Status Solidi RRL 8, 794-800 (2014).
46.J. P. Rojas, G. A. Torres Sevilla, M. T. Ghoneim, S. B. Inayat, S. M. Ahmed, A. M. Hussain, and M. M. Hussain, ACS Nano 8, 1468-1474 (2014).
47.J. P. Rojas, G. A. T. Sevilla, and M. M. Hussain, Sci. Rep. 3 (2013).
48.G. A. Torres Sevilla, J. P. Rojas, H. M. Fahad, A. M. Hussain, R. Ghanem, C. E. Smith, and M. M. Hussain, Adv. Mater. 26, 2794-2799 (2014).
49.A. Diab, G. A. Torres-Sevilla, S. Cristoloveanu, and M. M. Hussain, IEEE Trans. Elect. Dev. 61, 3178 (2014).
50.A. Diab, G. A. Torres Sevilla, M. T. Ghoneim, and M. M. Hussain, Appl. Phys. Lett. 105, 133509 (2014).
51.G. A. Torres Sevilla, S. B. Inayat, J. P. Rojas, A. M. Hussain, and M. M. Hussain, Small 9, 3916-3921 (2013).
52.M. T. Ghoneim, M. A. Zidan, K. N. Salama, and M. M. Hussain, Microelectr. J. 45, 1392-1395 (2014).
53.M. T. Ghoneim, J. P. Rojas, C. D. Young, G. Bersuker, and M. M. Hussain, IEEE Trans. Rel. 64, 579-585 (2014).
54.International Technology Roadmap for Semiconductors (2013).
55.W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M. Sule, M. Steer, and P. D. Franzon, IEEE Des. Test. Comput. 22, 498-510 (2005).
56.H. Wei, T. F. Wu, D. Sekar, B. Cronquist, R. F. Pease, and S. Mitra, IEEE Int. Elect. Dev. Meet., San Francisco, USA (2012).
57.L. Cao, J. P. Krusius, M. A. Korhonen, and T. S. Fisher, IEEE Trans. Compon. Packag. Manuf. Technol. A 21, 113-123 (1998).
58.J. Torresola, C.-P. Chiu, G. Chrysler, D. Grannes, R. Mahajan, and R. Prasher, A. Watwe. IEEE Trans. Adv. Packag. 28, 659-664 (2005).
59.J. Seo, K. Han, T. Youn, H.-E. Heo, S. Jang, J. Kim, H. Yoo, J. Hwang, C. Yang, and H. Lee, IEEE Int. Elect. Dev. Meet. Tech. Dig., San Francisco, USA (2013).

Data & Media loading...


Article metrics loading...



In today’s digital world, complementary metal oxide semiconductor (CMOS) technology enabled scaling of bulk mono-crystalline silicon (100) based electronics has resulted in their higher performance but with increased dynamic and off-state power consumption. Such trade-off has caused excessive heat generation which eventually drains the charge of battery in portable devices. The traditional solution utilizing off-chip fans and heat sinks used for heat management make the whole system bulky and less mobile. Here we show, an enhanced cooling phenomenon in ultra-thin (>10 μm) mono-crystalline (100) silicon (detached from bulk substrate) by utilizing deterministic pattern of porous network of vertical “through silicon” micro-air channels that offer remarkable heat and weight management for ultra-mobile electronics, in a cost effective way with 20× reduction in substrate weight and a 12% lower maximum temperature at sustained loads. We also show the effectiveness of this event in functional MOS field effect transistors (MOSFETs) with high-κ/metal gate stacks.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd