Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/12/10.1063/1.4938101
1.
1.K. Uetani, S. Ata, S. Tomonoh, T. Yamada, M. Yumura, and K. Hata, Adv. Mater. 26, 5857-5862 (2014).
http://dx.doi.org/10.1002/adma.201401736
2.
2.G. Xin, H. Sun, T. Hu, H. R. Fard, X. Sun, N. Koratkar, T. Borca-Tasciuc, and J. Lian, Adv. Mater. 26, 4521-4526 (2014).
http://dx.doi.org/10.1002/adma.201400951
3.
3.M. Singh, R. Asthana, C. E. Smith, and A. L. Gyekenyesi, in Mater. Sust. Dev.: Cer. Engr. Sci. Proc. 2010, edited by H.-T. Lin, A. Gyekenyesi, L. An, S. Mathur, and T. Ohji (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2010), Vol. 31.
4.
4.P. M. Geffroy, J. D. Mathias, and J. F. Silvain, Adv. Eng. Mater. 10, 400-405 (2008).
http://dx.doi.org/10.1002/adem.200700285
5.
5.S. V. Garimella, V. Singhal, and L. Dong, IEEE Proc. 94, 1534-1548 (2006).
http://dx.doi.org/10.1109/JPROC.2006.879801
6.
6.K. Tanaka, S. Ogata, R. Kobayashi, T. Tamura, M. Kitsunezuka, and A. Shinma, J. App. Phys. 114, 193512 (2013).
http://dx.doi.org/10.1063/1.4831946
7.
7.C. Subramaniam, Y. Yasuda, S. Takeya, S. Ata, A. Nishizawa, D. Futaba, T. Yamada, and K. Hata, Nanoscale 6, 2669-2674 (2014).
http://dx.doi.org/10.1039/c3nr05290g
8.
8.A. Bhattacharya and R. L. Mahajan, J. Electron. Packag. 124, 155-163 (2002).
http://dx.doi.org/10.1115/1.1464877
9.
9.V. Carey and A. Shah, “The exergy cost of information processing: A comparison of computer-based technologies and biological systems,” J. Electron. Packag. 128, 346-352 (2006).
http://dx.doi.org/10.1115/1.2351899
10.
10.K. H. Baloch, N. Voskanian, and M. Bronsgeest, J. Cumings. Nat. Nano 7, 316-319 (2012).
http://dx.doi.org/10.1038/nnano.2012.39
11.
11.C. Cheng, W. Fan, J. Cao, S.-G Ryu, J. Ji, C. P. Grigoropoulos, and Wu, J. ACS Nano 5, 10102-10107 (2011).
http://dx.doi.org/10.1021/nn204072n
12.
12.F. Incropera, J. Heat Trans. 110, 1097-1111 (1988).
http://dx.doi.org/10.1115/1.3250613
13.
13.S. Krishnamoorthy, MSc. Thesis, University of Illinois, Chicago, USA, 2008.
14.
14.Y. Fu, N. Nabiollahi, T. Wang, S. Wang, Z. Hu, B. Carlberg, Y. Zhang, X. Wang, and J. Liu, Nanotechnology 23, 045304 (2012).
http://dx.doi.org/10.1088/0957-4484/23/4/045304
15.
15.A. Fischer, T. Koprucki, K. Gärtner, M. L. Tietze, J. Brückner, B. Lüssem, K. Leo, A. Glitzky, and R. Scholz, Adv. Funct. Mater. 24, 3367-3374 (2014).
http://dx.doi.org/10.1002/adfm.201303066
16.
16.K. O’Donnell and X. Chen, Appl. Phys. lett. 58, 2924-2926 (1991).
http://dx.doi.org/10.1063/1.104723
17.
17.A. K. Agarwal, S. Seshadri, and L. B. Rowland, IEEE Elect. Dev. Lett. 18, 592-594 (1997).
http://dx.doi.org/10.1109/55.644081
18.
18.D. BuHanan, IEEE Trans. Elect. Dev. 16, 117-124 (1969).
http://dx.doi.org/10.1109/T-ED.1969.16573
19.
19.G. Pananakakis, G. Ghibaudo, R. Kies, and C. Papadas, J. Appl. Phys. 78, 2635-2641 (1995).
http://dx.doi.org/10.1063/1.360124
20.
20.M. Powell, C. Van Berkel, and J. Hughes, Appl. Phys. lett. 54, 1323-1325 (1989).
http://dx.doi.org/10.1063/1.100704
21.
21.A. Vassighi and M. Sachdev, Thermal and Power Management of Integrated (Springer, Berlin, Germany, 2006).
22.
22.S. S. Sapatnekar, IEEE Trans. Emerg. Sel. Topics Circuits Syst. 1, 5-18 (2011).
http://dx.doi.org/10.1109/JETCAS.2011.2138250
23.
23.K. C. Otiaba, N. N. Ekere, R. Bhatti, S. Mallik, M. Alam, and E. H. Amalu, Microelectron. Reliab. 51, 2031-2043 (2011).
http://dx.doi.org/10.1016/j.microrel.2011.05.001
24.
24.Y. Sun and J. A. Rogers, Adv. Mater. 19, 1897-1916 (2007).
http://dx.doi.org/10.1002/adma.200602223
25.
25.S. Farsinezhad, A. Mohammadpour, A. N. Dalrymple, J. Geisinger, P. Kar, M. J. Brett, and K. Shankar, J. Nanosci. Nanotechnol. 13, 2885-2891 (2013).
http://dx.doi.org/10.1166/jnn.2013.7409
26.
26.G. F. Taylor, IEEE Int. Elect. Devices Meet., Tech. Dig., Hillsboro, USA (2013).
27.
27.J. C. Ku, S. Ozdemir, G. Memik, and Y. Ismail, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 15, 592-604 (2007).
http://dx.doi.org/10.1109/TVLSI.2007.896916
28.
28.R. McGowen, C. A. Poirier, C. Bostak, J. Ignowski, M. Millican, W. H. Parks, and S. Naffziger, IEEE J. Solid-State Circuits 41, 229-237 (2006).
http://dx.doi.org/10.1109/JSSC.2005.859902
29.
29.G. A. Torres Sevilla, M. T. Ghoneim, H. Fahad, J. P. Rojas, A. M. Hussain, and M. M. Hussain, ACS Nano 8, 9850-9856 (2014).
http://dx.doi.org/10.1021/nn5041608
30.
30.M. T. Ghoneim, M. A. Zidan, M. Y. Alnassar, A. N. Hanna, J. Kosel, K. N. Salama, and M. M. Hussain, Adv. Electron. Mater. 1, 1500045 (2015).
31.
31.M. Ghoneim and M. M. Hussain, Appl. Phys. Lett. 107, 052904 (2015).
http://dx.doi.org/10.1063/1.4927913
32.
32.M. T. Ghoneim and M. M. Hussain, Electronics 4, 424-479 (2015).
http://dx.doi.org/10.3390/electronics4030424
33.
33.J. P. Rojas, G. A. Torres Sevilla, N. Alfaraj, M. T. Ghoneim, A. T. Kutbee, A. Sridharan, and M. M. Hussain, ACS Nano 9, 52555263 (2015).
http://dx.doi.org/10.1021/acsnano.5b00686
34.
34.M. T. Ghoneim, N. Alfaraj, G. A. T. Sevilla, H. M. Fahad, and M. M. Hussain, IEEE 73rd Ann. Dev. Res. Conf. Columbus, Ohio, USA (2015).
35.
35.M. Ghoneim, J. Rojas, A. Kutbee, A. Hanna, and M. Hussain, IEEE Int. Conf. Elect. Comp. Eng., Dhaka, Bangladesh (2014).
36.
36.N. Einer-Jensen and M. Khorooshi, Exp. Brain Res. 130, 244-247 (2000).
http://dx.doi.org/10.1007/s002219900230
37.
37.M. Irmak, A. Korkmaz, and O. Erogul, Med. Hypotheses 63, 974-979 (2004).
http://dx.doi.org/10.1016/j.mehy.2004.05.003
38.
38.D. Xu, H. Lu, L. Huang, S. Azuma, M. Kimata, and R. Uchida, IEEE Trans. Ind. Appl. 38, 1426-1431 (2002).
http://dx.doi.org/10.1109/TIA.2002.802995
39.
39.L. Condra, D. Das, N. Pendse, and M. G., IEEE Trans. Compon. Packag. Technol. 24, 721-728 (2001).
http://dx.doi.org/10.1109/6144.974966
40.
40.S. Im and K. Banerjee, IEEE Int. Electron Devices Meet., Tech. Dig., San Francisco, USA (2000).
41.
41.J. P. Rojas, M. T. Ghoneim, C. D. Young, and M. M. Hussain, IEEE Trans. Electr. Dev. 60, 3305-3309 (2013).
http://dx.doi.org/10.1109/TED.2013.2278186
42.
42.M. T. Ghoneim, J. P. Rojas, A. M. Hussain, and M. M. Hussain, Phys. Status Solidi RRL 8, 163-166 (2014).
http://dx.doi.org/10.1002/pssr.201308209
43.
43.M. Ghoneim, A. Kutbee, F. G. Nasseri, G. Bersuker, and M. M. Hussain, Appl. Phys. Lett. 104, 234104 (2014).
http://dx.doi.org/10.1063/1.4882647
44.
44.J. P. Rojas, G. T. Sevilla, and M. M. Hussain, Appl. Phys. Lett. 102, 064102 (2013).
http://dx.doi.org/10.1063/1.4791693
45.
45.J. M. Nassar, A. M. Hussain, J. P. Rojas, and M. M. Hussain, Phys. Status Solidi RRL 8, 794-800 (2014).
http://dx.doi.org/10.1002/pssr.201409257
46.
46.J. P. Rojas, G. A. Torres Sevilla, M. T. Ghoneim, S. B. Inayat, S. M. Ahmed, A. M. Hussain, and M. M. Hussain, ACS Nano 8, 1468-1474 (2014).
http://dx.doi.org/10.1021/nn405475k
47.
47.J. P. Rojas, G. A. T. Sevilla, and M. M. Hussain, Sci. Rep. 3 (2013).
http://dx.doi.org/10.1038/srep02609
48.
48.G. A. Torres Sevilla, J. P. Rojas, H. M. Fahad, A. M. Hussain, R. Ghanem, C. E. Smith, and M. M. Hussain, Adv. Mater. 26, 2794-2799 (2014).
http://dx.doi.org/10.1002/adma.201305309
49.
49.A. Diab, G. A. Torres-Sevilla, S. Cristoloveanu, and M. M. Hussain, IEEE Trans. Elect. Dev. 61, 3178 (2014).
http://dx.doi.org/10.1109/TED.2014.2360659
50.
50.A. Diab, G. A. Torres Sevilla, M. T. Ghoneim, and M. M. Hussain, Appl. Phys. Lett. 105, 133509 (2014).
http://dx.doi.org/10.1063/1.4897148
51.
51.G. A. Torres Sevilla, S. B. Inayat, J. P. Rojas, A. M. Hussain, and M. M. Hussain, Small 9, 3916-3921 (2013).
http://dx.doi.org/10.1002/smll.201301025
52.
52.M. T. Ghoneim, M. A. Zidan, K. N. Salama, and M. M. Hussain, Microelectr. J. 45, 1392-1395 (2014).
http://dx.doi.org/10.1016/j.mejo.2014.07.011
53.
53.M. T. Ghoneim, J. P. Rojas, C. D. Young, G. Bersuker, and M. M. Hussain, IEEE Trans. Rel. 64, 579-585 (2014).
http://dx.doi.org/10.1109/TR.2014.2371054
54.
54.International Technology Roadmap for Semiconductors (2013).
55.
55.W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M. Sule, M. Steer, and P. D. Franzon, IEEE Des. Test. Comput. 22, 498-510 (2005).
http://dx.doi.org/10.1109/MDT.2005.136
56.
56.H. Wei, T. F. Wu, D. Sekar, B. Cronquist, R. F. Pease, and S. Mitra, IEEE Int. Elect. Dev. Meet., San Francisco, USA (2012).
57.
57.L. Cao, J. P. Krusius, M. A. Korhonen, and T. S. Fisher, IEEE Trans. Compon. Packag. Manuf. Technol. A 21, 113-123 (1998).
http://dx.doi.org/10.1109/95.679040
58.
58.J. Torresola, C.-P. Chiu, G. Chrysler, D. Grannes, R. Mahajan, and R. Prasher, A. Watwe. IEEE Trans. Adv. Packag. 28, 659-664 (2005).
http://dx.doi.org/10.1109/TADVP.2005.858439
59.
59.J. Seo, K. Han, T. Youn, H.-E. Heo, S. Jang, J. Kim, H. Yoo, J. Hwang, C. Yang, and H. Lee, IEEE Int. Elect. Dev. Meet. Tech. Dig., San Francisco, USA (2013).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/12/10.1063/1.4938101
Loading
/content/aip/journal/adva/5/12/10.1063/1.4938101
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/12/10.1063/1.4938101
2015-12-11
2016-12-05

Abstract

In today’s digital world, complementary metal oxide semiconductor (CMOS) technology enabled scaling of bulk mono-crystalline silicon (100) based electronics has resulted in their higher performance but with increased dynamic and off-state power consumption. Such trade-off has caused excessive heat generation which eventually drains the charge of battery in portable devices. The traditional solution utilizing off-chip fans and heat sinks used for heat management make the whole system bulky and less mobile. Here we show, an enhanced cooling phenomenon in ultra-thin (>10 μm) mono-crystalline (100) silicon (detached from bulk substrate) by utilizing deterministic pattern of porous network of vertical “through silicon” micro-air channels that offer remarkable heat and weight management for ultra-mobile electronics, in a cost effective way with 20× reduction in substrate weight and a 12% lower maximum temperature at sustained loads. We also show the effectiveness of this event in functional MOS field effect transistors (MOSFETs) with high-κ/metal gate stacks.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/12/1.4938101.html;jsessionid=jyFaE1gKfSf2ZjmMEAdGD4Mc.x-aip-live-03?itemId=/content/aip/journal/adva/5/12/10.1063/1.4938101&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/12/10.1063/1.4938101&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/12/10.1063/1.4938101'
Right1,Right2,Right3,