Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/12/10.1063/1.4938102
1.
1.R. W. Terhune, Bull. Am. Phys. Soc. 8, 359 (1963).
2.
2.P. D. Maker and R. W. Terhune, Phys. Rev. 148, 990 (1966).
http://dx.doi.org/10.1103/PhysRev.148.990
3.
3.M. Müller and A. Zumbusch, Comp. Phys. Comm. 8, 2156 (2007).
4.
4.S. Roy, J. R. Gord, and A. K. Patnaik, Prog. Energ. Combust. 36, 280 (2010).
http://dx.doi.org/10.1016/j.pecs.2009.11.001
5.
5.R. Hancock, F. Schauer, R. Lucht, and R. Farrow, Appl. Opt. 36, 3217 (1997).
http://dx.doi.org/10.1364/AO.36.003217
6.
6.A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.4142
7.
7.T. Meyer, S. Roy, and J. Gord, Appl. Spectrosc. 61, 1135 (2007).
http://dx.doi.org/10.1366/000370207782596996
8.
8.M. Karavitis, R. Zadoyan, and V. A. Apkariana, J. Chem. Phys. 114, 4131 (2000).
http://dx.doi.org/10.1063/1.1346643
9.
9.M. Heid, S. Schlücker, U. Schmitt, T. Chen, R. Schweitzer-Stenner, V. Engel, and W. Kiefer, J. Raman Spectrosc. 32, 771 (2001).
http://dx.doi.org/10.1002/jrs.741
10.
10.G. Knopp, P. Radi, M. Tulej, T. Gerber, and P. Beaud, J. Chem. Phys. 118, 8223 (2003).
http://dx.doi.org/10.1063/1.1566437
11.
11.T. Kiviniemi, T. Kiljunen, and M. Pettersson, J. Chem. Phys. 125, 164302 (2006).
http://dx.doi.org/10.1063/1.2358987
12.
12.H. Tran, F. Chaussard, N. L. Cong, B. Lavorel, O. Faucher, and P. Joubert, J. Chem. Phys. 131, 174310 (2009).
http://dx.doi.org/10.1063/1.3257640
13.
13.T. Seeger, J. Kiefer, A. Leipertz, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, Opt. Lett. 34, 3755 (2009).
http://dx.doi.org/10.1364/OL.34.003755
14.
14.R. F. Begley, A. B. Harvey, and R. L. Byer, Appl. Phys. Lett. 25, 387 (1974).
http://dx.doi.org/10.1063/1.1655519
15.
15.Y. R. Shen, The principle of nonlinear optics (Wiley, New York, 1984).
16.
16.S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995).
17.
17.Y. R. Shen, Rev. Mod. Phys. 48, 1 (1976).
18.
18.W. M. Tolles, J. W. Nibler, J. R. McDonald, and A. B. Harvey, Appl. Spectrosc. 31, 253 (1977).
http://dx.doi.org/10.1366/000370277774463625
19.
19.J. P. Kuehner, S. V. Naik, W. D. Kulatilaka, N. Chai, N. M. Laurendeau, R. P. Lucht, M. O. Scully, S. Roy, A. K. Patnaik, and J. R. Gord, J. Chem. Phys. 128, 174308 (2008).
http://dx.doi.org/10.1063/1.2909554
20.
20.D. J. Tannor, S. A. Rice, and P. M. Weber, J. Chem. Phys. 83, 6185 (1985).
21.
21.S. Meyer and V. Engel, J. Raman Spectrosc. 31, 33 (2000).
http://dx.doi.org/10.1002/(SICI)1097-4555(200001/02)31:1/2<33::AID-JRS494>3.0.CO;2-H
22.
22.Z. Sun, B. Fu, D. H. Zhang, and S. Y. Lee, J. Chem. Phys. 130, 044312 (2009).
http://dx.doi.org/10.1063/1.3068709
23.
23.D. D. Dlott, Ann. Rev. Phys. Chem. 37, 157 (1986).
http://dx.doi.org/10.1146/annurev.pc.37.100186.001105
24.
24.X. Z. Gu, M. Hayashi, S. Suzuki, and S. H. Lin, Biochim. Biophys. Acta 1229, 215 (1995).
http://dx.doi.org/10.1016/0005-2728(94)00197-D
25.
25.Y. Nagata and S. Mukamel, J. Am. Chem. Soc. 132, 6434 (2010).
http://dx.doi.org/10.1021/ja100508n
26.
26.K. Niu, B. Zhao, Z. Sun, and S.-Y. Lee, J. Chem. Phys. 132, 084510 (2010).
http://dx.doi.org/10.1063/1.3330818
27.
27.M. Schmitt, G. Knopp, A. Materny, and W. Kiefer, Chem. Phys. Lett. 270, 9 (1997).
http://dx.doi.org/10.1016/S0009-2614(97)00347-3
28.
28.M. Schmitt, G. Knopp, A. Materny, and W. Kiefer, J. Phys. Chem. A 102, 4059 (1998).
http://dx.doi.org/10.1021/jp972213p
29.
29.B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, J. Chem. Phys. 125, 044502 (2006).
http://dx.doi.org/10.1063/1.2219439
30.
30.D. D. Dlott, in Laser Spectroscopy of Solids II, edited by W. M. Yen (Springer-Verlag, Berlin, 1988), p. 167.
31.
31.K. Niu and S.-Y. Lee, J. Chem. Phys. 136, 064504 (2012).
http://dx.doi.org/10.1063/1.3682470
32.
32.S. Mukamel and J. D. Biggs, J. Chem. Phys. 134, 161101 (2011).
http://dx.doi.org/10.1063/1.3581889
33.
33.K. Niu, S. Cong, and S.-Y. Lee, J. Chem. Phys. 131, 054311 (2009).
http://dx.doi.org/10.1063/1.3198473
34.
34.Z. Sun, J. Lu, D. H. Zhang, and S.-Y. Lee, J. Chem. Phys. 128, 144114 (2008).
http://dx.doi.org/10.1063/1.2888551
35.
35.D. J. Tannor and E. J. Heller, J. Chem. Phys. 77, 202 (1982).
http://dx.doi.org/10.1063/1.443643
36.
36.A. B. Myers, R. A. Harris, and R. A. Mathies, J. Chem. Phys. 79, 603 (1983).
http://dx.doi.org/10.1063/1.445807
37.
37.A. B. Myers and R. A. Mathies, in Biological Applications of Raman Spectroscopy: Resonance Raman Spectra of Polyenes and Aromatics, edited by T. G. Spiro (Wiley & Sons, New York, 1987), Vol. 2, pp. 158.
38.
38.W. T. Pollard, S. L. Dexheimer, Q. Wang, L. A. Peteaunu, C. V. Shank, and R. A. Mathies, J. Phys. Chem. 96, 6147 (1992).
http://dx.doi.org/10.1021/j100194a013
39.
39.S. Shim, C. M. Stuart, and R. A. Mathies, Comp. Phys. Comm. 9, 697 (2008).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/12/10.1063/1.4938102
Loading
/content/aip/journal/adva/5/12/10.1063/1.4938102
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/12/10.1063/1.4938102
2015-12-11
2016-09-30

Abstract

Coherent anti-Stokes Raman spectroscopy (CARS) is conventionally described by just one diagram/term where the three electric field interactions act on the ket side in a Feynman dual time-line diagram in a specific time order of pump, Stokes and probe pulses. In theory, however, any third-order nonlinear spectroscopy with three different electric fields interacting with a molecule can be described by forty eight diagrams/terms. They reduce to just 24 diagrams/terms if we treat the time ordering of the electric field interactions on the ket independently of those on the bra, i.e. the ket and bra wave packets evolve independently. The twenty four polarization terms can be calculated in the multidimensional, separable harmonic oscillator model to obtain the intensities and line-shapes. It is shown that in fs/ps CARS, for the two cases of off-resonance CARS in toluene and resonanceCARS in rhodamine 6G, where we use a fs pump pulse, a fs Stokes pulse and a ps probe pulse, we obtain sharp vibrational lines in four of the polarization terms where the pump and Stokes pulses can create a vibrational coherence on the ground electronic state, while the spectral line-shapes of the other twenty terms are broad and featureless. The conventional CARS term with sharp vibrational lines is the dominant term, with intensity at least one order of magnitude larger than the other terms.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/12/1.4938102.html;jsessionid=GGb3YB6cOP7zcuS4DrIviCeU.x-aip-live-03?itemId=/content/aip/journal/adva/5/12/10.1063/1.4938102&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/12/10.1063/1.4938102&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/12/10.1063/1.4938102'
Right1,Right2,Right3,