Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.S. T. Zhang, A. B. Kounga, W. Jo, C. Jamin, K. Seifert, T. Granzow, J. Rödel, and D. Damjanovic, Adv. Mater. 21, 4716 (2002).
2.M. Li, H. R. Zhang, S. N. Cook, L. H. Li, J. A. Kilner, I. M. Reaney, and D. C. Sinclair, Chem. Mater. 27, 629 (2015).
3.Y. Guo, Y. Liu, R. L. Withers, F. Brink, and H. Chen, Chem. Mater. 23, 219 (2011).
4.J. Kreisel, P. Bouvier, B. Dkhil, P. A. Thomas, A. M. Glazer, T. R. Welberry, B. Chaabane, and M. Mezouar, Phys. Rev. B 68, 014113 (2003).
5.E. Aksel, J. S. Forrester, B. Kowalski, M. Deluca, D. Damjanovic, and J. L. Jones, Phys. Rev. B 85, 024121 (2012).
6.W. F. Liu and X. B. Ren, Phys. Rev. Lett. 103, 257602 (2009).
7.W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, and J. Rödel, J. Electroceram. 29, 71 (2012).
8.J. Yao, N. Monsegue, M. Murayama, W. Leng, W. T. Reynolds, Q. Zhang, H. Luo, J. Li, W. Ge, and D. Viehland, Appl. Phys. Lett. 100, 012901 (2012).
9.E. Burcsu, G. Ravichandran, and K. Bhattacharya, Appl. Phys. Lett. 77, 1698 (2012).
10.C. Luo, W. Ge, Q. Zhang, J. Li, H. Luo, and D. Viehland, Appl. Phys. Lett. 101, 141912 (2012).
11.A. Yamaji, Y. Enomoto, K. Kinoshita, and T. Murakami, J. Am. Ceram. Soc. 60, 97 (1977).
12.M. Zannen, H. Khemakhem, A. Kabadou, and M. Es-Souni, J. Alloys Compds. 555, 56 (2013).
13.P. V. Lambeck and G. H. Jonker, Ferroelectrics 22, 729 (1978).
14.V. S. Postinkov, V. S. Pavlov, and S. K. Turkov, J. Phys. Chem. Solids 31, 1785 (1970).
15.H. J. Kleebe, S. Lauterbach, L. Silvestroni, H. Kungl, M. J. Hoffmann, E. Erdem, and R. -A. Eichel, Appl. Phys. Lett. 94, 142901 (2009).
16.W. Jo, J. E. Daniels, J. L. Jones, X. L. Tan, P. A. Thomas, D. Damjanovic, and J. Rödel, J. Appl. Phys. 109, 014110 (2011).
17.J. E. Daniels, W. Jo, J. Ro. del, and J. L. Jones, Appl. Phys. Lett. 95, 032904 (2009).
18.E. J. Lee, J. Jeong, and Y. H. Han, Japan. J. Appl. Phys. 43, 8126 (2004).
19.D. Rout, K. -S. Moon, S. -J. L. Kang, and I. W. Kim, J. Appl. Phys. 108, 084102 (2010).
20.S. Trujillo, J. Kreisel, Q. Jiang, J. H. Smith, P. A. Thomas, P. Bouvier, and F. Weiss, J. Phys: Condens. Matter 17, 6587 (2005).
21.J. Kreisel, A. M. Glazer, G. Jones, P. A. Thomas, L. Abello, and G. Lucazeau, J. Phys: Condens. Matter 12, 3267 (2000).
22.H. W. Zhang, H. Deng, C. Chen, L. Li, D. Lin, X. B. Li, X. Y. Zhao, H. S. Luo, and J. Yan, Scripta Mater. 75, 50 (2014).
23.Y. C. Shu and K. Bhattacharya, Phil. Mag. B 81, 2021 (2001).
24.S. Wada, K. Yako, H. Kakemoto, T. Tsurumi, and T. Kiguchi, J. Appl. Phys. 98, 014109 (2005).
25.X. Ren and K. Otsuka, Nature 389, 579 (1997).
26.Y. Murakami, S. Morito, Y. Nakajima, K. Otsuka, T. Suzuki, and T. Ohba, Mater. Lett. 21, 275 (1994).
27.R. Ahluwalia and W. W. Cao, Phys. Rev. B 63, 012103 (2000).
28.J. Y. Li and D. Liu, J. Mech. Phys. Solids 52, 1719 (2004).
29.J. Y. Li, R. C. Rogan, E. Üstündag, and K. Bhattacharya, Nature Mater. 4, 776 (2005).
30.D. Maurya, M. Murayama, A. Pramanick, W. T. Reynolds, Jr., K. An, and S. Priya, J. Appl. Phys. 113, 114101 (2013).
31.A. DeSimone and R. D. James, J. Mech. Phys. Solids 50, 283 (2002).

Data & Media loading...


Article metrics loading...



An electric-field induced giant strain response and doping level dependent domain structural variations have been studied in the dysprosium (Dy3+)-modified 0.935(NaBi)TiO-0.065BaTiO(Dy : NBBT) ceramics with the doping levels of 0%, 0.5%, 1%, and 2%. X-ray diffraction and Raman spectroscopy analyses not only demonstrates the change in ionic configurations induced by Dy3+doping, but also shows the local crystal symmetry for ≥ 0.5% doping levels to deviate from the idealized cubic structure. Piezoresponse force microscopy measurement exhibits the presence of an intermediate phase with orthorhombic symmetry at the critical Dy3+doping level of 2%. Moreover, at this doping level, a giant recoverable nonlinear strain of ∼0.44% can be observed with high normalized strain (/) of 728 pm/V. At the same applied field, the strain exhibits a 175% increase than that of NBBT ceramic. Such a large strain stems from the varying coherence lengths of polar nanoregions (PNRs) and an unusual reversible 90° domain switching caused by the symmetry conforming property of point defects, where the restoring force is provided by unswitchable defects. The mechanism reveals a new possibility to achieve large electric-field strain effect for a wide range of ferroelectric systems, which can lead to applications in novel “on-off” actuators.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd