Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/12/10.1063/1.4938518
1.
1.T. A. Moore, Int. J. Coal Geol. 101, 3681 (2012).
http://dx.doi.org/10.1016/j.coal.2012.05.011
2.
2.Z. Ye, D. Chen, and J. G. Wang, Fuel 121, 110 (2014).
http://dx.doi.org/10.1016/j.fuel.2013.12.019
3.
3.M. Pillalamarry, S. Harpalani, and S. Liu, Int. J. Coal Geol. 86, 342348 (2011).
http://dx.doi.org/10.1016/j.coal.2011.03.007
4.
4.D. C. Thorstenson and D. W. Pollock, Rev. Geophys. 27, 6178 (1989).
http://dx.doi.org/10.1029/RG027i001p00061
5.
5.G. Staib, R. Sakurovs, and E. M. A. Gray, Int. J. Coal. Geol. 116–117, 106116 (2013).
http://dx.doi.org/10.1016/j.coal.2013.07.005
6.
6.C. R. Clarkson and R. M. Bustin, Fuel 78, 13451362 (1999).
http://dx.doi.org/10.1016/S0016-2361(99)00056-3
7.
7.D. M. Smith and F. L. Williams, Fuel 62, 251255 (1984).
http://dx.doi.org/10.1016/0016-2361(84)90046-2
8.
8.X. R. Wei, G. X. Wang, P. Massarotto, S. D. Golding, and V. Rudolph, Chem. Eng. Sci. 62, 41934203 (2007).
http://dx.doi.org/10.1016/j.ces.2007.04.032
9.
9.J. W. Haus and K. W. Kehr, Phys. Rep. 150, 263406 (1987).
http://dx.doi.org/10.1016/0370-1573(87)90005-6
10.
10.H. Hua, X. Li, Z. Fang, N. Wei, and Q. Li, Energy 35, 29392944 (2010).
http://dx.doi.org/10.1016/j.energy.2010.03.028
11.
11.J. Klafter and I. M. Sokolov, Phys. World 18, 2932 (2005).
http://dx.doi.org/10.1088/2058-7058/18/8/33
12.
12.J. Kang, F. Zhou, C. Liu, and Y. Liu, Int. J. Non-Linear Mech. 76, 2028 (2015).
http://dx.doi.org/10.1016/j.ijnonlinmec.2015.05.004
13.
13.R. Metzler and J. Klafter, Phys. Rep. 339, 177 (2000).
http://dx.doi.org/10.1016/S0370-1573(00)00070-3
14.
14.M. A. A. da Silva, G. M. Viswanathan, and J. C. Cressoni, Phys. Rev. E 89, 052110 (2014).
http://dx.doi.org/10.1103/PhysRevE.89.052110
15.
15.I. Y. Wong, M. L. Gardel, D. R. Reichman, E. R. Weeks, M. T. Valentine, A. R. Bausch, and D. A. Weitz, Phys. Rev. Lett. 92, 178101 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.178101
16.
16.P. Massignan, C. Manzo, J. A. Torreno-Pina, M. F. García-Parajo, M. Lewenstein, and J. G. J. Lapeyre, Phys. Rev. Lett. 112, 150603 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.150603
17.
17.W. Tan, C. Fu, C. Fu, W. Xie, and H. Cheng, Appl. Phys. Lett. 91, 183901 (2007).
http://dx.doi.org/10.1063/1.2805208
18.
18.R. Metzler and J. Klafter, J. Phys. A: Math. Gen. 37, R161R208 (2004).
http://dx.doi.org/10.1088/0305-4470/37/31/R01
19.
19.S. Ratynskaia, K. Rypdal, C. Knapek, S. Khrapak, A. V. Milovanov, A. Ivlev, J. J. Rasmussen, and G. E. Morfill, Phys. Rev. Lett. 96, 105010 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.105010
20.
20.I. Goychuk, Phys. Rev. Lett. 113, 100601 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.100601
21.
21.W. Zhao, Y. Cheng, M. Yuan, and F. An, Energy Fuels 28, 22872296 (2014).
http://dx.doi.org/10.1021/ef402093g
22.
22.C. Tadjeran, M. M. Meerschaert, and H. P. Scheffler, J. Comput. Phys. 213, 205213 (2006).
http://dx.doi.org/10.1016/j.jcp.2005.08.008
23.
23.T. A. M. Langlands and B. I. Henry, J. Comput. Phys. 205, 719736 (2005).
http://dx.doi.org/10.1016/j.jcp.2004.11.025
24.
24.N. Korabel and E. Barkai, Phys. Rev. Lett. 104, 170603 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.170603
25.
25.S. P. Nandi and J. P. L. Walker, Fuel 54, 8186 (1975).
http://dx.doi.org/10.1016/0016-2361(75)90061-7
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/12/10.1063/1.4938518
Loading
/content/aip/journal/adva/5/12/10.1063/1.4938518
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/12/10.1063/1.4938518
2015-12-17
2016-12-10

Abstract

Methanedesorption in coal matrix is one of the fundamental gas transport processes during coalbed methane extraction, the mechanism of which is commonly described by Fickian diffusiontheory. Here, an anomalous subdiffusion model with fractional derivatives is developed to explore the methanedesorption in coal matrix with a highly heterogeneous pore structure. Numerical simulations reproduce the volume fraction of gas desorbed over the entire timescale of experimental desorption. It is suggested that the diffusion of methane in heterogeneous coal matrix may obey the anomalous time and space subdiffusion, rather than Fickian second law. The physical reason is perhaps due to the basic topological complexity inherent to porous coal matrix and the strong adsorption effect of coal on methane molecules.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/12/1.4938518.html;jsessionid=xyO6vQSp4SzU4CqhnG4wz68U.x-aip-live-02?itemId=/content/aip/journal/adva/5/12/10.1063/1.4938518&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/12/10.1063/1.4938518&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/12/10.1063/1.4938518'
Right1,Right2,Right3,