Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.T. Lv, L. Pan, X. Liu, and Z. Sun, Catal. Sci. Technol. 2, 22972301 (2012).
2.K. Inumaru, M. Yasui, T. Kasahara, K. Yamaguchi, A. Yasuda, and S. Yamanaka, J. Mater. Chem. 21, 12117-12125 (2011).
3.H. Q. Li, J. Qu, Q. Cui, H. Xu, H. Luo, M. Chi, R. A. Meisner, W. Wang, and S. Dai, J. Mater. Chem. 21, 9487-9490 (2011).
4.Y. W. Lim, Y. Tang, Y. H. Cheng, and Z. Chen, Nanoscale 2, 2751-2757 (2010).
5.Y. Shengyuan, Z. Peining, A. S. Nair, and S. Ramakrishna, J. Mater. Chem. 21, 6541-6548 (2011).
6.N. Yang, Y. Liu, H. Wen, Z. Tang, H. Zhao, Y. Li, and D. Wang, ACS Nano 7(2), 15041512 (2013).
7.L. W. Zhang, H. B. Fu, and Y. Fa. Zhu, Adv. Funct. Mater. 18, 21802189 (2008).
8.J. B. Joo, M. Dahl, N. Li, F. Zaera, and Y. Yin, Energy Environ. Sci. 6, 2082-2092 (2013).
9.P. D. Cozzoli, R. Comparelli, E. Fanizza, M. L. Curri, A. Agostiano, and D. Laub, J. Am. Chem. Soc. 126(12), 38683879 (2004).
10.J. Tang, J. R. Durrant, and D. R. Klug, J. Am. Chem. Soc. 130(42), 1388513891 (2008).
11.K. Kadzioła, I. Piwonski, A. Kisielewska, D. Szczukocki, B. Krawczyk, and J. Sielski, Appl. Surf. Sci. 288, 503512 (2014).
12.K. Woan, G. Pyrgiotakis, and W. Sigmund, Adv. Mater. 21, 22332239 (2009).
13.C. Hu, F. Chen, T. Lu, C. Lian, S. Zheng, Q. Hu, S. Duo, and R. Zhang, Appl. Surf. Sci. 317, 648656 (2014).
14.Q. Xiang, J. Yu, and M. Jaroniec, Chem. Soc. Rev. 41, 782796 (2012).
15.W. Tu, Y. Zhou, Q. Liu, Z. Tian, J. Gao, X. Chen, H. Zhang, J. Liu, and Z. Zou, Adv. Funct. Mater. 22, 12151221 (2012).
16.X. Liu, L. Pan, T. Lv, G. Zhu, T. Lu, Z. Sun, and C. Sun, RSC Advances 1, 12451249 (2011).
17.Q. Huang, S. Tian, D. Zeng, X. Wang, W. Song, Y. Li, W. Xiao, and C. Xie, ACS Catal. 3, 14771485 (2013).
18.Y. Haldorai, A. Rengaraj, C. H. Kwak, Y. S. Huh, and Y. K. Han, Synthetic Met. 198, 1018 (2014).
19.X. Huang, L. Wang, J. Zhou, and N. Gao, Water Res 57, 1-7 (2014).
20.M. Wojtoniszak, B. Zielinska, X. Che, R. J. Kalenczuk, and E. B. Palen, J. Mater. Sci. 47, 31853190 (2012).
21.Y. Zhan, Z. R. Tang, X. Fu, and Y. J. Xu, ACS Nano 5, 74267435 (2011).
22.W. Fan, Q. Lai, Q. Zhang, and Ye Wang, J. Phys. Chem. C 115, 1069410701 (2011).
23.W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).
24.M. S. A. S. Shah, A. R. Park, K. Zhang, J. H. Park, and P. J. Yoo, ACS Appl. Mater. Int 4, 38933901 (2012).
25.N. G. Park, G. Schlichthorl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, and A. J. Frank, J. Phys. Chem. B 103, 3308-3314 (1999).
26.See supplementary material at for XRD pattern and FTIR spectrum of graphene oxide & RGO, EDX spectra of bare TiO2nanoparticles and TG nanocomposites, FE-SEM images of TG 5, TG 7 and TG 10 nanocomposite, HR-TEM image of bare TiO2Raman mapping images of TiO2-graphene nanocomposites, The UV-Vis absorption spectra of UV light irradiated MB dye and RB dye in the presence of photocatalysts.[Supplementary Material]
27.L. Gu, J. Wang, H. Cheng, Y. Zhao, L. Liu, and X. Han, ACS Appl. Mater. Int 5, 30853093 (2013).
28.Y. J. Xu, Y. Zhuang, and X. Fu, J. Phys. Chem. C 114, 26692676 (2010).
29.H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, ACS Nano 4, 380 (2010).
30.S. Muduli, W. Lee, V. Dhas, S. Mujawar, M. Dubey, K. Vijayamohanan, S.H. Han, and S. Ogale, ACS Appl. Mater. Int. 1, 2030 (2009).
31.S. Sakthivel and H. Kisch, Angew. Chem. Int. Ed. 42, 4908 (2003).
32.A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phy. Rev. Lett. 97, 187401-1 (2006).
33.A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, Nat. Nanotechnol. 3, 210 (2008).
34.S. Entani, S. Sakai, Y. Matsumoto, H. Naramoto, T. Hao, and Y. Maeda, J. Phys. Chem. C. 114, 20042 (2010).
35.M. Wojtoniszak, B. Zielinska, X. Chen, R. J. Kalenczuk, and E. B. Palen, J. Mater. Sci. 47, 31853190 (2012).
36.Z. Ni, Y. Wang, T. Yu, and Z. Shen, Nano Res. 1, 273-291 (2008).
37.A. C. Ferrari, Solid State Commun 143, 4757 (2007).
38.A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).
39.J. C. Yu, J. Yu, W. Ho, Z. Jiang, and L. Zhang, Chem. Mater. 14, 3808-3816 (2002).

Data & Media loading...


Article metrics loading...



An efficient and facile method was adopted to prepare TiO-graphene (TG) nanocomposites with TiOnanoparticles uniformly distributed on graphene. By adjusting the amount of TiO precursor, both high and low dense TiOnanoparticles on graphene were effectively attained via electrostatic attraction between graphene oxide sheets and TiOnanoparticles. The prepared nanocomposites were characterized by various characterization techniques. The TG nanocomposite showed an excellent activity for the photodegradation of the organic dyes such as methylene blue (MB) and rose bengal (RB) under ultra violet (UV) light irradiation. The TG nanocomposite of TG 2.5 showed better photocatalytic performance than bare TiOnanoparticles and other composites. The enhanced activity of the composite material is attributed to the reduction in charge recombination and interaction of organic dyes with graphene. The decrease in charge recombination was evidenced from the photoluminescence(PL)spectra. The observed results suggest that the synthesized TG composites have a potential application to treat the industrial effluents, which contain organic dyes.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd