Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/12/10.1063/1.4938547
1.
1.H. Jeen, W. S. Choi, M. D. Biegalski, C. M. Folkman, I. C. Tung, D. D. Fong, J. W. Freeland, D. Shin, H. Ohta, M. F. Chisholm, and H. N. Lee, Nature Mater. 12, 1057 (2013).
http://dx.doi.org/10.1038/nmat3736
2.
2.R. Schollhorn, Angew. Chem. Int. Ed. 19, 983 (1980).
http://dx.doi.org/10.1002/anie.198009831
3.
3.M. A. Hayward, E. J. Cussen, J. B. Claridge, M. Bieringer, M. J. Rosseinsky, C. J. Kiely, S. J. Blundell, I. M. Marshall, and F. L. Pratt, Science 295, 1882 (2002).
http://dx.doi.org/10.1126/science.1068321
4.
4.Y. Tsujimoto, C. Tassel, N. Hayashi, T. Watanabe, H. Kageyama, K. Yoshimura, M. Takano, M. Ceretti, C. Ritter, and W. Paulus, Nature 450, 1062 (2007).
http://dx.doi.org/10.1038/nature06382
5.
5.K. H. L. Zhang, P. V. Sushko, R. Colby, Y. Du, M. E. Bowden, and S. A. Chambers, Nat. Commun. 5 (2014).
6.
6.S. Inoue, M. Kawai, N. Ichikawa, H. Kageyama, W. Paulus, and Y. Shimakawa, Nature Chem. 2, 213 (2010).
http://dx.doi.org/10.1038/nchem.547
7.
7.V. Pralong, Prog. Solid State Chem. 37, 262 (2009).
http://dx.doi.org/10.1016/j.progsolidstchem.2010.08.002
8.
8.J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. P. Parkin, Science 339, 1402 (2013).
http://dx.doi.org/10.1126/science.1230512
9.
9.J. Maier, Nature Mater. 4, 805 (2005).
http://dx.doi.org/10.1038/nmat1513
10.
10.W. S. Choi, H. Jeen, J. H. Lee, S. S. A. Seo, Valentino R. Cooper, Karin M. Rabe, and H. N. Lee, Phys. Rev. Lett. 111, 097401 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.097401
11.
11.A. Nemudry, P. Rudolf, and R. Schöllhorn, Chem. Mater. 8, 2232 (1996).
http://dx.doi.org/10.1021/cm950504+
12.
12.R. Le Toquin, W. Paulus, A. Cousson, C. Prestipino, and C. Lamberti, J. Am. Chem. Soc. 128, 13161 (2006).
http://dx.doi.org/10.1021/ja063207m
13.
13.S. Stolen, E. Bakken, and C. E. Mohn, Phys. Chem. Chem. Phys. 8, 429 (2006).
http://dx.doi.org/10.1039/B512271F
14.
14.H. Jeen, W. S. Choi, J. W. Freeland, H. Ohta, C. U. Jung, and H. N. Lee, Adv. Mater. 25, 3651 (2013).
http://dx.doi.org/10.1002/adma.201300531
15.
15.J. Rodriguez and J. M. Gonzalez-Calbet, Mater. Res. Bull. 21, 429 (1986).
http://dx.doi.org/10.1016/0025-5408(86)90008-5
16.
16.W. T. A. Harrison, S. L. Hegwood, and A. J. Jacobson, J. Chem. Soc., Chem. Commun. 1953 (1995).
http://dx.doi.org/10.1039/c39950001953
17.
17.M. A. Hayward and M. J. Rosseinsky, Nature 450, 960 (2007).
http://dx.doi.org/10.1038/450960a
18.
18.S. B. Adler, J. Am. Ceram. Soc. 84, 2117 (2001).
http://dx.doi.org/10.1111/j.1151-2916.2001.tb00968.x
19.
19.S. Lee, T. L. Meyer, S. Park, T. Egami, and H. N. Lee, Appl. Phys. Lett. 105, 223515 (2014).
http://dx.doi.org/10.1063/1.4903348
20.
20.T. Takeda and H. Watanabe, J. Phys. Soc. Jpn. 33, 973 (1972).
http://dx.doi.org/10.1143/JPSJ.33.973
21.
21.K. H. Ahn, T. Lookman, and A. R. Bishop, Nature 428, 401 (2004).
http://dx.doi.org/10.1038/nature02364
22.
22.A. J. Millis, Nature 392, 147 (1998).
http://dx.doi.org/10.1038/32348
23.
23.C. K. Xie, Y. F. Nie, B. O. Wells, J. I. Budnick, W. A. Hines, and B. Dabrowski, Appl. Phys. Lett. 99, 052503 (2011).
http://dx.doi.org/10.1063/1.3622644
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/12/10.1063/1.4938547
Loading
/content/aip/journal/adva/5/12/10.1063/1.4938547
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/12/10.1063/1.4938547
2015-12-18
2016-12-08

Abstract

Control of oxygen stoichiometry in complex oxides via topotactic phase transition is an interesting avenue to not only modifying the physical properties, but utilizing in many energy technologies, such as energy storage and catalysts. However, detailed structural evolution in the close proximity of the topotactic phase transition in multivalent oxides has not been much studied. In this work, we used strontium cobaltites (SrCoO) epitaxially grown by pulsed laser epitaxy (PLE) as a model system to study the oxidation-driven evolution of the structure, electronic, and magnetic properties. We grew coherently strained SrCoOthin films and performed post-annealing at various temperatures for topotactic conversion into the perovskite phase (SrCoO). We clearly observed significant changes in electronic transport, magnetism, and microstructure near the critical temperature for the topotactic transformation from the brownmillerite to the perovskite phase. Nevertheless, the overall crystallinity was well maintained without much structural degradation, indicating that topotactic phase control can be a useful tool to control the physical properties repeatedly via redox reactions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/12/1.4938547.html;jsessionid=1DNAOqBp-nntByVPFLFtgKS7.x-aip-live-02?itemId=/content/aip/journal/adva/5/12/10.1063/1.4938547&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/12/10.1063/1.4938547&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/12/10.1063/1.4938547'
Right1,Right2,Right3,