Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.R. Waser and M. Aono, “Nanoionics-based resistive switching memories,” Nature Mater. 6, 833840 (2007).
2.E. Linn, R. Rosezin, C. Kugeler, and R. Waser, “Complementary resistive switches for passive nanocrossbar memories,” Nat. Mater. 9, 403 (2010).
3.K. Kim, S. Jo, S. Graba, and W. Lu, “Nanoscale resistive memory with intrinsic diode characteristics and long endurance,” Appl. Phys. Lett. 96, 053106 (2010).
4.X. A. Tran, B. Gao, J. F. Kang, X. Wu, L. Wu, Z. Fang, Z. R. Wang, K. L. Pey, Y. C. Yeo, A. Y. Du, M. Liu, B. Nguyen, M. F. Li, and H. Y. Yu, “Self-rectifying and forming-free unipolar HfOx based high performance RRAM built by Fab-Available materials,” in IEDM Tech. Dig., Dec. 2011, pp. 31.2.1-31.2.4.
5.C. Hsu, I. Wang, C. Lo, M. Chiang, W. Jang, C. Lin, and T. Hou, “Self-rectifying bipolar TaOx/TiO2 RRAM with superior endurance over 1012 cycles for 3D high-density storage-class memory,” in VLSI symp. Tech. Dig., Jun. 2013, pp. T166-T167.
6.A. Kawahara, R. Azuma, Y. Ikeda, K. Kawai, Y. Katoh, K. Tanabe, T. Nakamura, Y. Sumimoto, N. Yamada, N. Nakai, S. Sakamoto, Y. Hayakawa, K. Tsuji, S. Yoneda, A. Himeno, K. Origasa, K. Shimakawa, T. Takagi, T. Mikawa, and K. Aono, “An 8Mb Multi-Layered Cross-Point ReRAM Macro with 443MB/s Write Throughput,” IEEE Trans. Electron Devices 61(8), 28202826 (2014).
7.W. Lee, J. Park, J. Shin, J. Woo, S. Kim, G. Choi, S. Jung, S. Park, D. Lee, E. Cha, H. Lee, S. Kim, S. Chung, and H. Hwang, “Varistor-type bidirectional switch (JMax > 107 A/cm2, Selecivity ∼104) for 3D bipolar resistive memory arrays,” in Proc. Symp. VLSI Technol., Jun. 2012, pp. 37-38.
8.G. W. Burr, K. Virwani, R. S. Sheony, A. Padilla, M. BrightSky, E. A. Joseph, M. Lofaro, A. J. Kellock, R. S. King, K. Nguyen, A. N. Bowers, M. Jurich, C. T. Rettner, B. Jackson, D. S. Bethune, R. M. Shelby, T. Topuria, N. Arellano, P. M. Rice, B. N. Kurdi, and K. Gopalakrishnan, “Large-scale (512kbit) integration of multilayer-ready access-devices based on mixed-ionic-electronic-conduction (MIEC) at 100% yield,” in VLSI Symp. Tech. Dig., Jun. 2012, pp. 41-42.
9.S. Kim, Y. Kim, K. Kim, S. Kim, S. Lee, M. Chang, E. Cho, M. Lee, D. Lee, C. Kim, U. Chung, and I. Yoo, “Performance of threshold switching in chalcogenide glass for 3D stackable selector,” in Proc. Symp. VLSI Technol., Jun. 2013, pp. T240- T241.
10.W. Kim, H. Lee, B. Kim, K. Jung, T. Seong, S. Kim, H. Jung, H. Kim, J. Yoo, H. Lee, S. Kim, S. Chung, K. Lee, J. Lee, H. Kim, and S. Lee, “NbO2-based low power and cost effective 1S1R switching for high density cross point ReRAM application,” in Symp. VLSI Technol. Dig. Tech. Papers., Jun. 2014, pp. 1-2.
11.S. Jo, T. Kumar, S. Narayanan, W. Lu, and H. Nazarian, “3D-stackable crossbar resistive memory based on field assisted superlinear threshold (FAST) selector,” in IEEE Int. Electron Devices Meet. Dig. Tech. papers., 2014, pp. 6.7.1-6.7.4.
12.J. van den Hurk, E. Linn, H. Zhang, R. Waser, and I. Valov, “Volatile resistance states in electrochemical metallization cells enabling non-destructive readout of complementary resistive switches,” Nanotechnology 25(42), 425202 (2014).
13.H. Sun, Q. Liu, C. Li, S. Long, H. Lv, C. Bi, Z. Huo, L. Li, and M. Liu, “Direct observation of conversion between threshold swiching and memory switching induced by conductive filament morpholohy,” Adv. Funct. Mater. 24(36), 56795686 (2014).
14.I. Valov, R. Waser, J. R. Jameson, and M. N. Kozicki, “Electrochemical metallization memories—Fundamentals, applications, prospects,” Nanotechnology 22(25), 254003254024 (2011).
15.N. Onofrio, D. Guzman, and A. Strachan, “Atomic origin of ultrafast resistance switching in nanoscale electrometallization cells,” Nat. Mater. 14, 440446 (2015).
16.S. Coffa, J. M. Poate, and D. C. Jacobson, “Determination of diffusion mechanisms in amorphous silicon,” Phys. Rev. B 45(15), 83558358 (1992).
17.F. Rollert, N. A. Stolwijk, and H. Mehrer, “Solubility, diffusion and thermodynamic properties of silver in silicon,” J. Phys. D: App. Phys. 20, 11481155 (1987).
18.J. I. Pankove and N. M. Johnson, Hydrogen in Semiconductors (Academic press, 1991), Vol. 34.
19.M. Hossain, H. H. Abu-Safe, H. Naseem, and W. D. Brown, “Characterization of hydrogenated amorphous silicon thin films prepared by magnetron sputtering,” J. Non-Cryst. Solids 352, 1823 (2006).
20.S. Coffa and J. M. Poate, “Hydrogen induced detrapping of transition metals in amorphous silicon,” Appl. Phys. Lett. 59(18), 22962298 (1991).

Data & Media loading...


Article metrics loading...



The effect of hydrogen treatment on the threshold switching property in a Ag/amorphous Si based programmable metallization cells was investigated for selector device applications. Using the Ag filament formed during motion of Ag ions, a steep-slope (5 mV/dec.) for threshold switching with higher selectivity (∼105) could be achieved. Because of the faster diffusivity of Ag atoms, which are inside solid-electrolytes, the resulting Ag filament could easily be dissolved under low current regime, where the Ag filament possesses weak stability. We found that the dissolution process could be further enhanced by hydrogen treatment that facilitated the movement of the Ag atoms.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd