Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/12/10.1063/1.4938549
1.
1.I. Safarik and M. Safarikova, Chem. Pap. 63, 497 (2009).
http://dx.doi.org/10.2478/s11696-009-0054-2
2.
2.Y. W. Jun, J. H. Lee, and J. Cheon, Angew. Chem. Int. Ed. 47, 5122 (2008).
http://dx.doi.org/10.1002/anie.200701674
3.
3.B. D. Terris and T. Thomson, J. Phys. D: Appl. Phys. 38, 199 (2005).
http://dx.doi.org/10.1088/0022-3727/38/12/R01
4.
4.M. P. Sharock, IEEE Trans. Magn. 36, 2420 (2000).
http://dx.doi.org/10.1109/20.908453
5.
5.K. Binder and D. W. Hermann, Monte Carlo simulation in statistical physics, 3rd ed. (Springer, 1997).
6.
6.D. P. Landau and K. Binder, A guide to Monte Carlo simulations in statistical physics, 3rd ed. (Cambridge, 2009).
7.
7.D. Hinzke and U. Nowak, Phys. Rev. B 58, 265 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.265
8.
8.U. Nowak and D. Hinzke, J. Appl. Phys. 85, 4337 (1999).
http://dx.doi.org/10.1063/1.370360
9.
9.J. Noguès, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J. S. Munoz, and M. D. Baró, Phys. Reports 422, 65 (2005).
http://dx.doi.org/10.1016/j.physrep.2005.08.004
10.
10.V. Skumryev, S. Stoyanov, Y. Zhang, G. D. Givord, and J. Noguès, Nature 423, 850 (2003).
http://dx.doi.org/10.1038/nature01687
11.
11.O. Iglesias, X. Batlle, and A. Labarta, J. Phys.: Condens. Matter 19, 406232 (2007).
http://dx.doi.org/10.1088/0953-8984/19/40/406232
12.
12.O. Iglesias and A. Labarta, Phys. B 372, 247 (2006).
http://dx.doi.org/10.1016/j.physb.2005.10.059
13.
13.K. N. Trohidou, M. Vasilakaki, L. Del Bianco, D. Fiorani, and A. M. Testa, J. Magn. Magn. Mater. 316, 82 (2007).
http://dx.doi.org/10.1016/j.jmmm.2007.02.035
14.
14.H. Kachkachi and D .A. Garanin, Physica A 291, 485 (2001).
http://dx.doi.org/10.1016/S0378-4371(00)00535-5
15.
15.M. Dimian and H. Kachkachi, J. Appl. Phys 91, 7625 (2002).
http://dx.doi.org/10.1063/1.1450846
16.
16.L. Berger, Y. Labaye, M. Tamine, and J. M. D. Coey, Phys. Rev. B 77, 104331 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.104431
17.
17.K. J. Garcia-Otero, M. Porto, J. Rivas, and A. Bunde, J. Magn. Magn. Mater. 203, 268 (1999).
http://dx.doi.org/10.1016/S0304-8853(99)00268-1
18.
18.K. Binder, Applications of Monte Carlo methods in statistical physics (Springer, 1984).
19.
19.O. Chubykalo, U. Nowak, R. Smirnov-Rueda, M. A. Wongsam, R. W. Chantrell, and J. M. Gonzalez, Phys. Rev. B 67, 064422 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.064422
20.
20.U. Nowak, R. W. Chantrell, and E. C. Kennedy, Phys. Rev. Lett 84, 163 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.163
21.
21.O. Chubykalo, U. Nowak, R. Smirnov-Rueda, M. A. Wongsom, R. W. Chantrell, and J. M. Gonzalez, Phys. Rev. B 67, 64222 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.064422
22.
22.X. Z. Cheng, M. B. A. Jalil, Hwee Kuan Lee, and Yutaka Okabe, Phys. Rev. Lett. 96, 067208 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.067208
23.
23.X. Z. Cheng, M. B. A. Jalil, and Hwee Kuan Lee, Phys. Rev. B 73, 224438 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.224438
24.
24.P. V. Melenev, Yu. L. Raikher, V. V. Rusakov, and R. Perzynski, Phys. Rev. B 86, 104423 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.104423
25.
25.H. F. Du and A. Du, J. Appl. Phys. 99, 104306 (2006).
http://dx.doi.org/10.1063/1.2193068
26.
26.R. H. Swendsen and J. S. Wang, Phys. Rev. Lett. 58, 86 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.86
27.
27.U. Wolff, Phys. Lett. B 228, 379 (1989).
http://dx.doi.org/10.1016/0370-2693(89)91563-3
28.
28.J. S. Wang and R. H. Swendsen, Phys. A 167, 565 (1990).
http://dx.doi.org/10.1016/0378-4371(90)90275-W
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/12/10.1063/1.4938549
Loading
/content/aip/journal/adva/5/12/10.1063/1.4938549
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/12/10.1063/1.4938549
2015-12-18
2016-09-25

Abstract

Recent advances in MC simulations of magnetic properties are rather devoted to non-interacting systems or ultrafast phenomena, while the modeling of quasi-static hysteresis loops of an assembly of spins with strong internal exchange interactions remains limited to specific cases. In the case of any assembly of magnetic moments, we propose MC simulations on the basis of a three dimensional classical Heisenberg model applied to an isolated magnetic slab involving first nearest neighbors exchange interactions and uniaxial anisotropy. Three different algorithms were successively implemented in order to simulate hysteresis loops: the classical free algorithm, the cone algorithm and a mixed one consisting of adding some global rotations. We focus particularly our study on the impact of varying the anisotropic constant parameter on the coercive field for different temperatures and algorithms. A study of the angular acceptation move distribution allows the dynamics of our simulations to be characterized. The results reveal that the coercive field is linearly related to the anisotropy providing that the algorithm and the numeric conditions are carefully chosen. In a general tendency, it is found that the efficiency of the simulation can be greatly enhanced by using the mixed algorithm that mimic the physics of collective behavior. Consequently, this study lead as to better quantified coercive fields measurements resulting from physical phenomena of complex magnetic (nano)architectures with different anisotropy contributions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/12/1.4938549.html;jsessionid=t32ti28O2fs3r6UDM34XSC9W.x-aip-live-03?itemId=/content/aip/journal/adva/5/12/10.1063/1.4938549&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/12/10.1063/1.4938549&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/12/10.1063/1.4938549'
Right1,Right2,Right3,