Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/12/10.1063/1.4938550
1.
1.K. E. Bullen, Phys. Chem. Earth 1, 68 (1956).
http://dx.doi.org/10.1016/0079-1946(56)90006-4
2.
2.K. E. Bullen and R. A. Haddon, Proc. Nat. Acad. Sci. 58, 846 (1967).
http://dx.doi.org/10.1073/pnas.58.3.846
3.
3.A. M. Dziewonski and D. L. Anderson, Phys. Earth Planet. Int. 25, 297 (1981).
http://dx.doi.org/10.1016/0031-9201(81)90046-7
4.
4.D. L. Anderson and A. M. Dziewonski, Scientific American 251, 60 (1984).
http://dx.doi.org/10.1038/scientificamerican1084-60
5.
5.R. M. Wentzcovitch, Y. G. Yu, and Z. Wu, Reviews in Mineralogy and Geochemistry 71, 59 (2010).
http://dx.doi.org/10.2138/rmg.2010.71.4
6.
6.R. M. Wentzcovitch, Z. Wu, and P. Carrier., Reviews in Mineralogy and Geochemistry 71, 99 (2010).
http://dx.doi.org/10.2138/rmg.2010.71.5
7.
7.J. Gluyas and R. Swarbrick, Petroleum Geoscience (Blackwell Science Ltd, 2004)
http://dx.doi.org/10.1002/gj.1006
8.
8.D. Wallace, Thermodynamics of Crystals (John Willey & Sons Inc, New York, 1972).
9.
9.P. Carrier, R. M. Wentzcovitch, and J. Tsuchiya, Phys. Rev. B 76, 064116 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.064116
10.
10.P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Ca, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J.Phys.:Condens.Matter 21, 395502 (2009).
http://dx.doi.org/10.1088/0953-8984/21/39/395502
11.
11.G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
12.
12.M. L. Marcondes and R. M. Wentzcovitch, J. Appl. Phys. 117, 215902 (2015).
http://dx.doi.org/10.1063/1.4921904
13.
13.D. B. Fraser and R. C. LeCraw, Rev. Sci. Instrum. 35, 1113 (1964).
http://dx.doi.org/10.1063/1.1718976
14.
14.B. Li and R. C. Liebermann, Proc. Nat. Acad. Sci. 104, 9145 (2007).
http://dx.doi.org/10.1073/pnas.0608609104
15.
15.Y. Higo, T. Inoue, B. S. Li, T. Irifune, and R. C. Liebermann, Proc. Nat. Acad. Sci. 104, 9145 (2007).
http://dx.doi.org/10.1073/pnas.0608609104
16.
16.D. J. Weidner, K. Swyler, and H. R. Carleton, Geophys. Res. Lett. 2, 189 (1975).
http://dx.doi.org/10.1029/GL002i005p00189
17.
17.J. D. Bass and D. J. Weidner, J. Geophys. Res. Solid Earth 89, 4359 (1984).
http://dx.doi.org/10.1029/JB089iB06p04359
18.
18.M. Murakami, Y. Ohishi, N. Hirao, and K. Hirose, Earth Planet. Sci. Lett. 277, 123 (2009).
http://dx.doi.org/10.1016/j.epsl.2008.10.010
19.
19.S. Speziale, H. Marquardt, and T. S. Duffy, Rev. Min. Geochem. 78, 543 (2014).
http://dx.doi.org/10.1063/1.1134277
20.
20.B. B. Karki, R. M. Wentzcovitch., S. de Gironcoli, and S. Baroni, Science 286, 1705 (1999).
http://dx.doi.org/10.1126/science.286.5445.1705
21.
21.R. M. Wentzcovitch, M. C. B. B. Kark, and S. de Gironcoli, Phys. Rev. Lett. 92, 018501 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.018501
22.
22.Z. Wu and R. M. Wentzcovitch, Physical Review B - Condensed Matter and Materials Physics 83, 1 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.184115
23.
23.J. P. Perdew and A. Zunger, Physical Review A 23, 5048 (1981).
http://dx.doi.org/10.1103/PhysRevA.23.2785
24.
24.D. Ceperley and B. J. Alder, Phys. Rev. Lett 45, 566 (1980).
http://dx.doi.org/10.1103/PhysRevLett.45.566
25.
25.J. Perdew, K. Burke, and M. Ernzerhof, Physical Review Letters Phys. Rev. Lett. (USA) 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
26.
26.J. Heyd, G. E. Scuseria, and M. Ernzerhof, The Journal of Chemical Physics 118, 8207 (2003).
http://dx.doi.org/10.1063/1.1564060
27.
27.P. E. Blochl, Physical Review B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
28.
28.M. Nunez-Valdez, M. K. Umemoto, and R. Wentzcovitch, Appl. Phys. Lett. 101, 170912 (2012).
http://dx.doi.org/10.1063/1.4754548
29.
29.R. Yang and Z. Wu, Earth Planet. Sci. Lett. 404, 14 (2014).
http://dx.doi.org/10.1016/j.epsl.2014.07.020
30.
30.G. Shukla, Z. Wu, H. Hsu, A. Floris, M. Cococcioni, and R. M. Wentzcovitch, Geophys. Res. Lett 42, 1741 (2015).
http://dx.doi.org/10.1002/2014GL062888
31.
31.K. Kunc and K. Syassen, Physical Review B 81, 134102 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.134102
32.
32.Z. Wu, R. M. Wentzcovitch, K. Umemoto, B. Li, K. Hirose, and J.-C. Zheng, Journal of Geophysical Research 113, B06204 (2008).
http://dx.doi.org/10.1029/2007JB005275
33.
33.Z. Zhang, L. Stixrude, and J. Brodholt, Earth and Planetary Science Letters 379, 1 (2013).
http://dx.doi.org/10.1016/j.epsl.2013.07.034
34.
34.R. Boehler and G. C. Kennedy, J. Phys. Chem. Solids 41, 517 (1980).
http://dx.doi.org/10.1016/0022-3697(80)90183-3
35.
35.J. N. Fritz, S. P. Marsh, W. J. Carter, and R. G. McQueen, Accurate Characterization of the High Pressure Enviroment 326, 201 (1972).
36.
36.H. Kinoshita, N. Hamaya, and H. Fujisawa, J. Phys. Earth 27, 337 (1979).
http://dx.doi.org/10.4294/jpe1952.27.337
37.
37.F. F. Voronov, E. V. Chernyshera, and V. A. Goncharova, in Proceedings of the Seventh Institute AIRACT Conference of High Pressure Science Technology, edited byB. Vodar and A. Morteau (Pergamon, 1980).
38.
38.C. H. Whitfield, E. M. Brody, and W. A. Basset, Rev. Sci. Instrum. 47, 942 (1976).
http://dx.doi.org/10.1063/1.1134778
39.
39.S. Yamamoto, I. Ohno, and O. L. Anderson, Journal of Physics and Chemistry of Solids 48, 143 (1987).
http://dx.doi.org/10.1016/0022-3697(87)90078-3
41.
41.D. Zhang, T. Sun, and R. M. Wentzcovitch, Phys. Rev. Lett. 24, 058501 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.058501
42.
42.T. Sun, D. B. Zhang, and R. M. Wentzcovitch, Phys. Rev. B 89, 094109 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.094109
43.
43.R. Hill, Proc. Phys. Soc. A 65, 349 (1952).
http://dx.doi.org/10.1088/0370-1298/65/5/307
44.
44.A. Reuss, Z. Angew. Math. Mech. 9, 49 (1929).
http://dx.doi.org/10.1002/zamm.19290090104
45.
45.W. Voigt, Lehrbuch der Kristallphysic (Vieweg+Teubner Verlag, 1928)
http://dx.doi.org/10.1007/978-3-663-15884-4
46.
46.D. L. Decker, Journal of Applied Physics 42, 3239 (1971).
http://dx.doi.org/10.1063/1.1660714
47.
47.J. Frankel, F. J. Rich, and C. G. Homan, J. Geophys. Res 81, 6357 (1976).
http://dx.doi.org/10.1029/JB081i035p06357
48.
48.F. D. Enck and J. G. Dommel, Journal of Applied Physics 36, 839 (1965).
http://dx.doi.org/10.1063/1.1714229
49.
49.A. S. M. Rao, K. Narender, G. K. K. Rao, and N. G. Krishna, Journal of Mod. Physics 4, 208 (2013).
http://dx.doi.org/10.4236/jmp.2013.42029
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/12/10.1063/1.4938550
Loading
/content/aip/journal/adva/5/12/10.1063/1.4938550
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/12/10.1063/1.4938550
2015-12-18
2016-12-08

Abstract

Despite the importance of thermoelastic properties of minerals in geology and geophysics, their measurement at high pressures and temperatures are still challenging. Thus, calculations are an essential tool for predicting these properties at extreme conditions. Owing to the approximate description of the exchange-correlation energy, approximations used in calculations of vibrational effects, and numerical/methodological approximations, these methods produce systematic deviations. Hybrid schemes combining experimental data and theoretical results have emerged as a way to reconcile available information and offer more reliable predictions at experimentally inaccessible thermodynamics conditions. Here we introduce a method to improve the calculated thermoelastic tensor by using highly accurate thermal equation of state(EoS). The corrective scheme is general, applicable to crystalline solids with any symmetry, and can produce accurate results at conditions where experimental data may not exist. We apply it to rock-salt-type NaCl, a material whose structural properties have been challenging to describe accurately by standard methods and whose acoustic/seismic properties are important for the gas and oil industry.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/12/1.4938550.html;jsessionid=NnAAJcHaYjIz8JqwycTEuzMr.x-aip-live-03?itemId=/content/aip/journal/adva/5/12/10.1063/1.4938550&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/12/10.1063/1.4938550&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/12/10.1063/1.4938550'
Right1,Right2,Right3,