Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.T. Erogbogbo, K.T. Yong, I. Roy, R. Hu, W.C. Law, W. Zhao, H. Ding, F. Wu, R. Kumar, M.T. Swihart, and P.N. Prasad, ACS Nano 5, 413 (2011).
2.Z. F. Li and E. Ruckenstein, Nano Lett. 4, 8 (2004).
3.G. Wang, S. T. Yau, K. Mantey, and M. H. Nayfeh, Opt. Commun. 281, 1765 (2008).
4.G. Belomoin, J. Therrien, A. Smith, S. Rao, R. Twesten, S. Chaieb, M. H. Nayfeh, L. Wagner, and L. Mitas, Appl. Phys. Lett. 80, 841 (2002).
5.J.H. Park, L. Gu, G. von Maltzahn, E. Ruoslahti, S.N. Bhatia, and M.J. Sailor, Nature Mater. 8, 331 (2009).
6.G. Ledoux, J. Gong, F. Huisken, O. Guillois, and C. Reynaud, Appl. Phys. Lett. 80, 4834 (2002).
7.X.Y. Chen, Y.F. Lu, Y.H. Wu, B.J. Cho, M.H. Liu, D.Y. Dai, and W.D. Song, J. Appl. Phys. 93, 6311 (2003).
8.W. J. I. DeBenedetti, S.-K. Chiu, M. C. Radlinger, J. R. Ellison, A. B. Manhat, Z. J. Zhang, J. Shi, and M. A. Goforth, J. Phys. Chem. C 119, 9595 (2015).
9.S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. I. Lebedev, G. Van Tendeloo, and V. V. Moshchalkov, Nat. Nanotechnol. 3, 174 (2008).
10.K. Dohnalova, A. N. Poddubny, A. A. Prokofiev, W. de Boer, C. P. Umesh, J. M. J Paulusse, H. Zuilhof, and T. Gregorkiewicz, Light Sci. Appl. 2, 1 (2013).
11.Y. Kanemitsu, Phys. Rev. B 49, 16845 (1994).
12.D. Mariotti, S. Mitra, and V. Svrcek, Nanoscale 5, 1385 (2013).
13.S.M. Liu, J. Nanosci. Nanotechnol. 8, 1110 (2008).
14.W. D. A. M de Boer, D. Timmerman, K. Dohnalova, I. N Yassievich, H. Zhang, W. J. Buma, and T. Gregorkiewicz, Nat. Nanotechnol. 5, 878 (2010).
15.C.-C. Tu, L. Tang, J. Huang, A. Voutsas, and L.Y. Lin, Opt. Exp. 18, 21622 (2010).
16.J. Choi, Wang N. S, and V. Reipa, Bioconj. Chem. 19, 680 (2008).
17.Z. F Li and E. Ruckenstein, Nano Lett. 4, 1463 (2004).
18.I. A. Rahman and V. Padavettan, J. Nanomat. 2012, 132424 (2012).
19.I. Alghoraibi and A. A. Ahmad, Int. J. Chem. Tech. Res. 6, 871 (2014).
20.K. J. Klabunde, Y.-X. Li, and B.-J. Tan, Chem. Mater. 3, 30 (1991).
21.K. J. Klabunde and G. C. Cardenas-Trivino, in Active Metals, edited by A. Fürstner (VCH, Weinheim, 1996), pp. 237278.
22.N. G. Semaltianos, S. Logothetidis, W. Perrie, S. Romani, R. J. Potter, S. P. Edwardson, P. French, M. Sharp, G. Dearden, and K. G. Watkins, J. Nanopart. Res. 12, 573 (2010).
23.P. Blandin, K.A. Maximova, M. B. Gongalsky, J.F. Sanchez-Royo, V.S. Chirvony, M. Sentis, V. Y. Timoshenko, and A.V. Kabashin, J. Mater. Chem. B 1, 2489 (2013).
24.D. Tan, Z. Ma, B. Xu, Y. Dai, G. Ma, M. He, Z. Jin, and J. Qiu, Phys. Chem. Chem. Phys. 13, 20255 (2011).
25.E. V. Barmina, C. Fotakis, P. A. Loukakos, E. Stratakis, and G. A. Shafeev, Appl. Phys. A 117, 359 (2014).
26.D. Rioux, M. Laferrière, A. Douplik, D. Shah, L. Lilge, A.V. Kabashin, and M.M. Meunier, J. Biomed. Opt. 14, 021010 (2009).
27.S. Alkis, A. K. Okyay, and B. Ortaç, J. Phys. Chem. C 116, 3432 (2012).
28.R. Intartaglia, K. Bagga, M. Scotto, A. Diaspro, and F. Brandi, Opt. Mater. Express 2, 510 (2012).
29.R. Intartaglia, K. Bagga, F. Brandi, G. Das, A. Genovese, E. Di Fabrizio, and A. Diaspro, J. Phys. Chem. C 115, 5102510 (2011).
30.H. Liu, F. Chen, X. Wang, Q. Yang, H. Bian, J. Si, and X. Hou, Thin Solid Films 518, 5188 (2010).
31.S. Hamad, G. Krishna Podagatlapalli, V. S. Vendamani, S. V. S. Nageswara Rao, A. P. Pathak, S. P. Tewari, and S. Venugopal Rao, J. Phys. Chem. C 118, 7139 (2014).
32.R. Intartaglia, K. Bagga, and F. Brandi, Opt. Express 22(3), 3117 (2014).
33.G. Krishna Podagatlapalli, S. Hamad, S. Sreedhar, S. P. Tewari, and S. Venugopal Rao, Chem. Phys. Lett. 530, 93 (2012).
34.G. Krishna Podagatlapalli, S. Hamad, S. P. Tewari, S. Sreedhar, M. D. Prasad, and S. Venugopal Rao, J. Appl. Phys. 113, 073106 (2013).
35.S. Hamad, G. Krishna Podagatlapalli, M. A. Mohiddon, and S. Venugopal Rao, Appl. Phys. Lett. 104, 263104 (2014).
36.S. Venugopal Rao, G. Krishna Podagatlapalli, and S. Hamad, J. Nanosci. Nanotech. 14, 1364 (2014).
37.G. Krishna Podagatlapalli, S. Hamad, M. A. Mohiddon, and S. Venugopal Rao, Appl. Surf. Sci. 303, 217 (2014).
38.S. Hamad, G. Krishna Podagatlapalli, M. A. Mohiddon, and S. Venugopal Rao, Chem. Phys. Lett. 621, 553 (2015).
39.G. Krishna Podagatlapalli, S. Hamad, Md. Ahamad Mohiddon, and S. Venugopal Rao, Las. Phys. Lett. 12, 036003 (2015).
40.G. Krishna Podagatlapalli, S. Hamad, and S. Venugopal Rao, J. Phys. Chem. C 119, 16972-16983 (2015).
41.S. Hamad, G. Krishna Podagatlapalli, S. V. S. Nageswara Rao, A. P. Pathak, and S. Venugopal Rao, in 12th International Conference on Fiber Optics and Photonics, OSA Technical Digest (online) (Optical Society of America, 2014), paper T3A.48.
42.O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, Appl. Surf. Sci. 252, 4702 (2006).
43.J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Vandriel, Phys. Rev. B 27, 1141 (1983).
44.M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, ACS Nano 3, 4062 (2009).
45.A. Borowiec and H. K. Haugen, Appl. Phys. Lett. 82, 4462 (2003).
46.L. Chen, X.-F. Jiang, Z. Guo, H. Zhu, T.-S. Kao, Q.-h. Xu, G. W. Ho, and M. Hong, J. Nanomat. 2014, Article ID 652829 (2014).
47.G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, and L. Pavesi, J. Appl. Phys. 91, 4601 (2002).
48.S. Vijayalakshmi, M. A. George, and H. Grebel, Appl. Phys. Lett. 70, 708 (1997).
49.S. Vijayalakshmi, F. Shen, and H. Grebel, Appl. Phys. Lett. 71, 3332 (1997).
50.S. Vijayalakshmi, H. Grebel, Z. Iqbal, and C. W. White, J. Appl. Phys. 84, 6502 (1998).
51.G. Schmid, Clusters and Colloids: From Theory to Application (VCH, Weinheim, 1994).
52.P. V. Kamat and D. Meisel, in Semiconductor Nanoclusters - Physical, Chemical, and Catalytic Aspects, edited byP. V. Kamat and D. Meisel, Studies in Surface Science and Catalysis Vol. 103 (Elsevier, Amsterdam, 1997).
53.A. S Edelstein and R. C. Cammarata, Nanoparticles: Synthesis, Properties and Applications (Institute of Physics Publishing, Bristol, 1996).
54.B. A. Smith, D. M. Waters, A. E. Faulhaber, M. A. Kreger, T. W. Roberti, and J. Z. Zhang, J. Sol-Gel Sci. Technol. 9, 125 (1997).
55.A. E. Faulhaber, B. A Smith, J. K. Andersen, and J. Z. Zhang, Mol. Cryst. Liq. Cryst. 25, 283 (1996).
56.B. A. Smith, J. Z. Zhang, U. Giebel, and G. Schmid, Chem. Phys. Lett. 139, 270 (1997).
57.R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, Phys. Rev. B 51, 11433 (1995).
58.G. L. Esley, Phys. Rev. Lett. 51, 2140 (1983).
59.R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, Phys. Rev. Lett. 58, 1680 (1987).
60.S. D. Brorson, J. G. Fujimoto, and E. P. Ippen, Phys. Rev. Lett. 59, 1962 (1987).
61.C.-K. Sun, F. Vallee, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, Phys. Rev. B 50, 15337 (1994).
62.H. E. Elsayed-Ali, T. Juhasz, G. O. Smith, and W. E Bron, Phys. Rev. B 43, 4488 (1991).
63.T. Juhasz, H. E. Elsayed-Ali, G.O. Smith, C. Suarez, and W. E. Bron, Phys. Rev. B 48, 15488 (1993).
64.W. S. Fann, R Storz, H. W. K Tom, and J. Boker, Phys. Rev. B 46, 13592 (1992).
65.T. S. Ahmadi, S. L. Logunov, and M. A. El-Sayed, J. Phys. Chem. 100, 8053 (1996).
66.T. S. Ahmadi, S. L. Logunov, M.A. El-Sayed, J.T. Khoury, and R.L. Whetten, J. Phys. Chem. B 101, 3713 (1997).
67.T.W. Roberti, B.A. Smith, and J.Z. Zhang, J. Chem. Phys. 102, 3860 (1995).
68.J. K. Hodak, I. Martini, and G. V. Hartland, J. Phys. Chem. B 102, 6958 (1998).
69.T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, and Y. Asahara, Appl. Phys. Lett. 65, 941 (1994).
70.J. Z. Zhang, Acc. Chem. Res. 30, 423 (1997).
71.N. J. Cherepy, D. B. Liston, J. A. Lovejoy, H. Deng, and J. Z. Zhang, J. Phys. Chem. B 102, 770 (1998).
72.B. Bescos, R. Hoch, H.-J. Schmidtke, and G. Gerbe, Appl. Phys. B 71, 373 (2000).
73.P.T. Anusha, D. Swain, T.S. Prashant, L. Giribabu, S.P. Tewari, and S. Venugopal Rao, J. Phys. Chem. C. 116, 17828 (2012).
74.D. Swain, P.T. Anusha, T. Shuvan Prashant, S. P. Tewari, T. Sarma, P. K. Panda, and S. Venugopal Rao, Appl. Phys. Lett. 100, 141109 (2012).
75.D. Swain, R. Singh, V. K. Singh, N. V. Krishna, L. Giribabu, and S. Venugopal Rao, J. Mater. Chem. C. 2, 1711 (2014).
76.S. Yang, W. Li, B. Cao, H. Zeng, and W. Cai, J. Phys. Chem. C 115, 21056-21062 (2011).
77.R. Intartaglia, K. Bagga, A. Genovese, A. Athanassiou, R. Cingolani, A. Diaspro, and F. Brandi, Phys. Chem. Chem. Phys. 14, 15406 (2012).
78.K. Abderrafi, R. Garcia-Calzada, M. B. Gongalsky, I. Suarez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibanez, and J.P. Martinez-Pastor, J. Phys. Chem. C 115, 51475151 (2011).
79.K. Abderrafi, R. Garcia-Calzada, J. F. Sanchez-Royo, V. S. Chirvony, S. Agouram, R. Abargues, R. Ibanez, and J.P. Martinez-Pastor, J. Phys. D. Appl. Phys. 46, 135301 (2013).
80.S. Hamad, S. P. Tewari, L. Giribabu, and S. Venugopal Rao, J. Porphy. Phth. 16, 140 (2012).
81.S. Minissale, S. Yerci, and L. D. Negro, Appl. Phys. Lett. 100, 021109 (2012).
82.S. Dhara, K. Imakita, P. K. Giri, and M. Fujii, Opt. Lett. 39, 3833 (2014).
83.B. Bescos, R. Hoch, H.-J. Schmidtke, and G. Gerbe, Appl. Phys. B 71, 373 (2000).
84.L. Wang, Q. Li3, H.-Y. Wang, J.-C. Huang, R. Zhang, Q.-D. Chen, H.-L. Xu, W. Han, Z.-Z. Shao, and H.-B. Sun, Light Sci. Applns. 4, e245 (2015) doi:10.1038/lsa.2015.18.
85.J. Fuzell, A. Thibert, T. M. Atkins, M. Dasog, E. Busby, J. G. C. Veinot, S. M. Kauzlarich, and D. S. Larsen, J. Phys. Chem. Lett. 4, 38063812 (2013).
86.K. Bagga, A. Barchanski, R. Intartaglia, S. Dante, R. Marotta, A. Diaspro, C.L. Sajti, and F. Brandi, Laser Phys. Lett. 10(6), art. no. 065603 (2013).
87.R. Intartaglia, A. Barchanski, K. Bagga, A. Genovese, G. Das, P. Wagener, E. De Fabrizio, F. Brandi, and S. Barcikowski, Nanoscale 4(4), 1271 (2012).
88.M. Yu. Kirillin, E. A. Sergeeva, P. D. Agrba, A. D. Krainov, A. A. Ezhov, D. V. Shuleiko, P. K. Kashkarov, and S. V. Zabotnov, Laser Phys. 25, 075604 (2015).
89.X. Li, G. Zhang, L. Jiang, X. Shi, K. Zhang, W. Rong, J. Duan, and Y. Lu, Opt. Express 23, 4226-4232 (2015).
90.O. V. Chefonov, A. V. Ovchinnikov, I. V. Ilina, and D. S. Sitnikov, High Temp., In Press,2015. DOI: 10.1134/S0018151X15050077.

Data & Media loading...


Article metrics loading...



We report results from our studies on the fabrication and characterization of silicon (Si) nanoparticles (NPs) and nanostructures (NSs) achieved through the ablation of Si target in four different liquids using ∼2 picosecond (ps) pulses. The consequence of using different liquid media on the ablation of Si target was investigated by studying the surface morphology along with material composition of Si based NPs. The recorded mean sizes of these NPs were ∼9.5 nm, ∼37 nm, ∼45 nm and ∼42 nm obtained in acetone, water, dichloromethane (DCM) and chloroform, respectively. The generated NPs were characterized by selected area electron diffraction(SAED), high resolution transmission microscopy(HRTEM), Raman spectroscopic techniques and Photoluminescence(PL) studies. SAED,HRTEM and Raman spectroscopy data confirmed that the material composition was Si NPs in acetone, Si/SiO NPs in water, Si-C NPs in DCM and Si-C NPs in chloroform and all of them were confirmed to be polycrystalline in nature. Surface morphological information of the fabricated Si substrates was obtained using the field emission scanning electron microscopic (FESEM) technique. FESEM data revealed the formation of laser induced periodic surface structures (LIPSS) for the case of ablation in acetone and water while random NSs were observed for the case of ablation in DCM and chloroform. Femtosecond (fs) nonlinear optical properties and excited state dynamics of these colloidal Si NPs were investigated using the Z-scan and pump-probe techniques with ∼150 fs (100 MHz) and ∼70 fs (1 kHz) laser pulses, respectively. The fs pump-probe data obtained at 600 nm consisted of single and double exponential decays which were tentatively assigned to electron-electron collisional relaxation (<1 ps) and non-radiative transitions (>1 ps). Large third order optical nonlinearities (∼10−14 e.s.u.) for these colloids have been estimated from Z-scan data at an excitation wavelength of 680 nm suggesting that the colloidal Si NPs find potential applications in photonic devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd