Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/12/10.1063/1.4939096
1.
1.N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.10267
2.
2.J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher, Nat. Phys. 7, 412 (2011).
http://dx.doi.org/10.1038/nphys1915
3.
3.C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008).
http://dx.doi.org/10.1103/RevModPhys.80.1083
4.
4.A. Kitaev, Annals of Phys. 303, 2 (2003).
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
5.
5.L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.096407
6.
6.L. Fu and C. L. Kane, Phys. Rev. B 79, 161408(R) (2009).
http://dx.doi.org/10.1103/PhysRevB.79.161408
7.
7.J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys. Rev. Lett. 104, 040502 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.040502
8.
8.R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.077001
9.
9.Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.177002
10.
10.A. C. Potter and P. A. Lee, Phys. Rev. Lett. 105, 227003 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.227003
11.
11.V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Science 336, 1003 (2012).
http://dx.doi.org/10.1126/science.1222360
12.
12.M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and H. Q. Xu, Nano Lett. 12, 6414 (2012).
http://dx.doi.org/10.1021/nl303758w
13.
13.A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman, Nat. Phys. 8, 887 (2012).
http://dx.doi.org/10.1038/nphys2479
14.
14.J. Liu, A. C. Potter, K. T. Law, and P. A. Lee, Phys. Rev. Lett. 109, 267002 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.267002
15.
15.D. Bagrets and A. Altland, Phys. Rev. Lett. 109, 227005 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.227005
16.
16.G. Kells, D. Meidan, and P. W. Brouwer, Phys. Rev. B 85, 060507(R) (2012).
http://dx.doi.org/10.1103/PhysRevB.85.060507
17.
17.D. Rainis, L. Trifunovic, J. Klinovaja, and D. Loss, Phys. Rev. B 87, 024515 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.024515
18.
18.J. Liu, J. Wang, and F. C. Zhang, Phys. Rev. B 90, 035307 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.035307
19.
19.L. P. Kouwenhoven, S. Jauhar, K. McCormick, D. Dixon, P. L. McEuen, Yu. V. Nazarov, N. C. van der Vaart, and C. T. Foxon, Phys. Rev. B 50, 2019 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.2019
20.
20.R. H. Blick, R. J. Haug, D. W. van der Weide, K. von Klitzing, and K. Eberl, App. Phys. Lett. 67, 3924 (1995).
http://dx.doi.org/10.1063/1.114406
21.
21.L. P. Kouwenhoven, S. Jauhar, J. Orenstein, and P. L. McEuen, Phys. Rev. Lett. 73, 3443 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.3443
22.
22.T. H. Oosterkamp, L. P. Kouwenhoven, A. E. A. Koolen, N. C. van der Vaart, and C. J. P. M. Harmans, Phys. Rev. Lett. 78, 1536 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.1536
23.
23.L. DiCarlo, C. M. Marcus, and J. S. Harris, Jr., Phys. Rev. Lett. 91, 246804 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.246804
24.
24.Q. -F. Sun and T. -H. Lin, Phys. Rev. B 56, 3591 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.3591
25.
25.M. Sato, Y. Takahashi, and S. Fujimoto, Phys. Rev. B 82, 134521 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.134521
26.
26.E. M. Stoudenmire, J. Alicea, O. A. Starykh, and M. P. A. Fisher, Phys. Rev. B 84, 014503 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.014503
27.
27.B. H. Wu and J. C. Cao, Phys. Rev. B 85, 085415 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.085415
28.
28.Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.2512
29.
29.N. S. Wingreen, A. P. Jauho, and Y. Meir, Phys. Rev. B 48, 8487 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.8487
30.
30.X. B. Chen, D. P. Liu, W. H. Duan, and H. Guo, Phys. Rev. B 87, 085427 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.085427
31.
31.A. P. Jauho, N. S. Wingreen, and Y. Meir, Phys. Rev. B 50, 5528 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.5528
32.
32.Q. F. Sun and X. C. Xie, J. Phys.: Condens. Matter. 21, 344204 (2009).
http://dx.doi.org/10.1088/0953-8984/21/34/344204
33.
33.T. D. Stanescu, R. M. Lutchyn, and S. Das Sarma, Phys. Rev. B 87, 094518 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.094518
34.
34.R. -L. Chu, G. -B. Liu, W. Yao, X. D. Xu, D. Xiao, and C. W. Zhang, Phys. Rev. B 89, 155317 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.155317
35.
35.K. T. Law, P. A. Lee, and T. K. Ng, Phys. Rev. Lett. 103, 237001 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.237001
36.
36.N. G. van Kampen, Stochastic Processes in Physics and Chemistry (Elsevier, Amsterdam, 2007).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/12/10.1063/1.4939096
Loading
/content/aip/journal/adva/5/12/10.1063/1.4939096
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/12/10.1063/1.4939096
2015-12-22
2016-09-27

Abstract

Employing the Keldysh Nonequilibrium Green’s function method, we investigate time-dependent transport through a topological superconductor with Majorana bound states in the presence of a high frequency microwave field. It is found that Majorana bound states driven by photon-assisted tunneling can absorb(emit) photons and the resulting photon-assisted tunneling side band peaks can split the Majorana bound state that then appears at non-zero bias. This splitting breaks from the current opinion that Majorana bound states appear only at zero bias and thus provides a new experimental method for detecting Majorana bound states in the Non-zero-energy mode. We not only demonstrate that the photon-assisted tunneling side band peaks are due to Non-zero-energy Majorana bound states, but also that the height of the photon-assisted tunneling side band peaks is related to the intensity of the microwave field. It is further shown that the time-varying conductance induced by the Majorana bound states shows negative values for a certain period of time, which corresponds to a manifestation of the phase coherent time-varying behavior in mesoscopic systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/12/1.4939096.html;jsessionid=cRB_kG4ZLADS6O1z8LZ-Qw35.x-aip-live-03?itemId=/content/aip/journal/adva/5/12/10.1063/1.4939096&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/12/10.1063/1.4939096&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/12/10.1063/1.4939096'
Right1,Right2,Right3,