Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.R. J. O. M. Hoofman, M. P. de Haas, L. D. A. Siebbeles, and J. M. Warman, Nature 392, 54 (1998).
2.J. Liu, T. F. Guo, and Y. Yang, J. Appl. Phys. 91, 1595 (2002).
3.T. W. Lee and O. O. Park, Adv. Mater. 12, 801 (2000).<801::AID-ADMA801>3.0.CO;2-G
4.G. Yu, J. Gao, J. C. Hummelen, F. Wudi, and A. J. Heeger, Science 270, 1789 (1995).
5.V. Gowrishankar, S. R. Scully, A. T. Chan, M. D. McGehee, Q. Wang, and H. M. Branz, J. Appl. Phys. 103, 064511 (2008).
6.S. Masi, S. Colella, A. Listorti, V. Roiati, A. Liscio, V. Palermo, A. Rizzo, and G. Gigli, Sci. Rep. 5, 7725 (2015).
7.B. J. Schwartz, Ann. Rev. Phys. Chem. 54, 141 (2003).
8.Y. F. Huang, A. R. Inigo, C. C. Chang, K. C. Li, C. F. Liang, C. W. Chang, T. S. Lim, S. H. Chen, J. D. White, U. S. Jeng, A. C. Su, Y. S. Huang, K. Y. Peng, S. A. Chen, W. W. Pai, C. H. Lin, A. R. Tameev, S. V. Novikov, A. V. Vannikov, and W. S. Fann, Adv. Funct. Mater. 17, 2902 (2007).
9.C. Y. Liu and S. A. Chen, Macromol. Rapid Commun. 28, 1743 (2007).
10.X. C. Chen and P. F. Green, Langmuir 26, 3659 (2010).
11.F. C. Spano and C. Silva, Annu. Rev. Phys. Chem. 65, 477 (2014).
12.K. Vandewal, S. Albrecht, E. T. Hoke, K. R. Graham, J. Widmer, J. D. Douglas, M. Schubert, W. R. Mateker, J. T. Bloking, G. F. Burkhard, A. Sellinger, J. M. J. Fréchet, A. Amassian, M. K. Riede, M. D. McGehee, D. Neher, and A. Salleo, Nature Mater. 13, 63 (2014).
13.J. Ou, Y. Yang, W. Lin, Z. Yuan, L. Gan, X. Lin, X. Chen, and Y. Chen, Appl. Phys. Lett. 106, 123304 (2015).
14.B. K. Crone, I. H. Campbell, P. S. Davids, and D. L. Smith, Appl. Phys. lett. 73, 3162 (1998).
15.I. H. Campbell, D. L. Smith, C. J. Neef, and J. P. Ferraris, Appl. Phys. Lett. 74, 2809 (1999).
16.A. R. Inigo, C. H. Tan, W. Fann, Y. S. Huang, G. Y. Perng, and S. A. Chen, Adv. Mater. 13, 504 (2001).<504::AID-ADMA504>3.0.CO;2-O
17.A. R. Inigo, H.-C. Chiu, W. Fann, Y.-S. Huang, U.-S. Jeng, T.-L. Lin, C.-H. Hsu, K.-Y. Peng, and S. A. Chen, Phys. Rev. B 69, 075201 (2004).
18.Q. Shi, Y. Hou, J. Lu, H. Jin, Y. Li, Y. Li, X. Sun, and J. Liu, Chem. Phys. Lett. 425, 353 (2006).
19.A. Watt, T. Eichmann, H. Rubinsztein-Dunlop, and P. Meredith, Appl. Phys. Lett. 87, 253109 (2005).
20.Q. Shi, Y. Hou, H. Jin, and Y. Li, J. Appl. Phys. 102, 073108 (2007).
21.T. Sun, Z. D. Guo, Y. T. Gu, H. Y. Li, G. F. Dong, Z. J. Shi, L. Dai, and G. G. Qin, Appl. Phys. Lett. 98, 223302 (2011).
22.M. H. Li, H. L. Chen, Y. F. Huang, W. T. Chuang, Y. R. Chen, H. S. Tsai, O. A. Semenikhin, and J. D. White, Chem. Phys. Lett. 505, 100 (2011).
23.C. H. Tan, A. R. Inigo, W. Fann, P.-K. Wei, G.-Y. Perng, and S. A. Chen, Org. Electronics 3, 81 (2002).
24.A. R. Inigo, H. C. Chiu, W. Fann, Y. S. Huang, U. S. Jeng, C. H. Hsu, K. Y. Peng, and S. A. Chen, Synth. Metals 139, 581 (2003).
25.T. Q. Nguyen, I. B. Martini, J. Liu, and B. J. Schwartz, J. Phys. Chem. B 104, 237 (2000).
26.H. J. Chen, L. Wang, and W. Y. Chi, Eur. Polym. J. 43, 4750 (2007).
27.S. H. Chen, A. C. Su, H. L. Chou, K. Y. Peng, and S. A. Chen, Macromolecule 37, 167 (2004).
28.Z. E. Lampert, S. E. Lappi, J. M. Papanikolas, C. L. Reynolds, Jr., and M. O. Aboelfotoh, J. Appl. Phys. 113, 233509 (2013).
29.D. Kajiya, S. Ozawa, T. Koganezawa, and K. Saitow, J. Phys. Chem. C 119, 7987 (2015).
30.D. Kajiya and K. Saitow, Nanoscale 7, 15780 (2015).
31.H. Scher and E. W. Montroll, Phys. Rev. B 12, 2455 (1975).
32.A. J. Mozer, N. S. Sariciftci, A. Pivrikas, R. Osterbacka, G. Juska, L. Brassat, and H. Bässler, Phys. Rev. B 71, 035214 (2005).
33.D. Hertel, H. Bässler, U. Scherf, and H. H. Hörhol, J. Chem. Phys. 110, 9214 (1999).
34.See supplementary material at for photoluminescence and absorption spectra.[Supplementary Material]
35.U. Jeng, C. Hsu, H. Sheu, H. Lee, A. R. Inigo, H. C. Chiu, W. S. Fann, S. H. Chen, A. C. Su, T. Lin, K. Y. Peng, and S. A. Chen, Macromolecules 38, 6566 (2005).
36.Y. Shi, J. Liu, and Y. Yang, J. Appl. Phys. 87, 4254 (2000).
37.B. Huang, E. Glynos, B. Frieberg, H. Yang, and P. F. Green, ACS Appl. Mater. Interfaces 4, 5204 (2012).
38.J. M. Mativetsky, H. Wang, S. S. Lee, L. W.- Brooksa, and Y.-L. Loo, Chem. Commun. 50, 5319 (2014).
39.A. Wakamiya, H. Nishimura, T. Fukushima, F. Suzuki, A. Saeki, S. Seki, I. Osaka, T. Sasamori, M. Murata, Y. Murata, and H. Kaji, Angew. Chem. Int. Ed. 53, 5800 (2014).
40.V. Skrypnychuk, N. Boulanger, V. Yu, M. Hilke, S. C. B. Mannsfeld, M. F. Toney, and D. R. Barbero, Adv. Funct. Mater. 25, 664 (2015).
41.V. Vohra, K. Kawashima, T Kakara, T. Koganezawa, I. Osaka, K. Takimiya, and H. Murata, Nat. Photon. 9, 403 (2015).

Data & Media loading...


Article metrics loading...



The hole mobility of poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylene vinylene] (MEH-PPV) film was measured using the time-of-flight method. The hole mobility was enhanced 4-fold after annealing at around the glass transition temperature (). Optical, atomic force, and Kelvin force microscopies, and grazing-incidence X-ray diffraction measurements indicate the enhancement can be attributed to a homogeneous filmstructure, a homogeneous Fermi level energy, and a face-on oriented structure, all of which were established by annealing at .


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd