Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/12/10.1063/1.4939136
1.
1.EG. Fischer, Extrusion of plastics (Wiley, New York, 1976).
2.
2.BC. Sakiadis, “Boundary layer behaviour on continuous solid surfaces: I boundary layer on a continuous flat surface,” AICHE J 7, 221225 (1961).
http://dx.doi.org/10.1002/aic.690070211
3.
3.L. Crane, “Flow past a stretching plate,” Z Angew Math Phys 21, 645647 (1970).
http://dx.doi.org/10.1007/BF01587695
4.
4.H.S. Takhar, M.A. Ali, and A.S. Gupta, “Stability of magnetohydrodynamic flow over a stretching sheet,” in Liquid Metal Hydrodynamics, edited by Lielpeteris and Moreau (Kluwer Academic Publishers, Dordrecht, 1989), pp. 465471.
5.
5.H.I. Andersson, “MHD flow of a viscous fluid past a stretching surface,” Acta Mech. 95, 227230 (1992).
http://dx.doi.org/10.1007/BF01170814
6.
6.M. Kumari, H.S. Takhar, and G. Nath, “MHD flow and heat transfer over a stretching surface with prescribed wall temperature or heat flux,” Thermo-Fluid Dynamics. Wärme und Stoffübertragung 25, 331336 (1990).
http://dx.doi.org/10.1007/BF01811556
7.
7.T. Watanabe and I. Pop, “Hall effects on magnetohydrodynamic boundary layer flow over a continuous moving flat plate,” Acta Mech. 108, 3547 (1995).
http://dx.doi.org/10.1007/BF01177326
8.
8.I. Pop and T.Y. Na, “A note on MHD flow over a stretching permeable surface,” Mech. Res. Comm. 25(3), 263269 (1998).
http://dx.doi.org/10.1016/S0093-6413(98)00037-8
9.
9.N. Chaturvedi, “On MHD flow past an infinite porous plate with variable suction,” Energy Convers. Manage. 37(5), 623627 (1996).
http://dx.doi.org/10.1016/0196-8904(95)00199-9
10.
10.G.A. Rao, A.S.S. Murthy, and V.V.R. Rao, “Hydrodynamic flow and heat transfer in a saturated porous medium between two parallel porous walls in a rotating system,” in Proceedings of the Eighth National heat and mass transfer conference (AU College of Engineering Vizag, 1985).
11.
11.M. Turkyilmazoglu, “Heat and mass transfer of the mixed hydrodynamic/therma lslip MHD viscous flow over a stretching sheet,” Int.J.Mech.Sci 53, 886-896 (2011).
http://dx.doi.org/10.1016/j.ijmecsci.2011.07.012
12.
12.Samir Kumar Nandy and Tapas Ray Mahapatra, “Effects of slip and heat generation /absorption on MHD stagnation flow of nanofluid past a stretching /shrinking surface with convective boundary conditions,” Int.J.Heat Mass Transfer 64, 1091-1100 (2013).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.05.040
13.
13. Turkyilmazoglu, “Exact analytical solution for hear and mass transfer of MHD slip flow in nano fluids,” Chem. Engng. Sci. 84, 182-187 (2012).
http://dx.doi.org/10.1016/j.ces.2012.08.029
14.
14.E.H. Aly and K. Vajravelu, “Exact and numerical solutions of MHD nano boundary layer flows over stretching surfaces in a porous medium,” Appl.Math.Comp 232, 191-2014 (2014).
http://dx.doi.org/10.1016/j.amc.2013.12.147
15.
15.Bikash Sahoo and Sebastian Poncet, “Flow and heat transfer of a third grade fluid past an exponentially stretching sheet with partial slip boundary condition,” Int.J.Heat Mass Transfer 54, 50105019 (2011).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.07.015
16.
16.Alin V Rosca and Ioan Pop, “Flow and heat transfer over a vertical permeable stretching/shrinking sheet with a second order slip,” Int.J.Heat Mas transfer 60, 355364 (2013).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.12.028
17.
17.Liancun Zheng et al., “Flow and radiation heat transfer of a nano fluid over a stretching sheet with velocity slip and temperature jump in porous medium,” J. Franklin Institute 350, 9901007 (2013).
http://dx.doi.org/10.1016/j.jfranklin.2013.01.022
18.
18.M. Turkyilmazoglu, “Heat and mass transfer of MHD second order slip flow,” Computers & Fluids 71, 426434 (2013).
http://dx.doi.org/10.1016/j.compfluid.2012.11.011
19.
19.M. Turkyilmazoglu, “Analytic heat and mass transfer of the mixed hydrodynamic/thermal slip MHD viscous flow over a stretching sheet,” Int J Mech Sci 53, 88696 (2011).
http://dx.doi.org/10.1016/j.ijmecsci.2011.07.012
20.
20.M. Turkyilmazoglu, “Multiple solutions of heat and mass transfer of MHD slip flow for the viscoelastic fluid over a stretching sheet,” Int J Therm Sci 50, 22642276 (2011).
http://dx.doi.org/10.1016/j.ijthermalsci.2011.05.014
21.
21.TG Fang, S Yao, J Zhang, and A. Aziz, “Viscous flow over a shrinking sheet with a second order slip flow model,” Commun Nonlinear Sci Numer Simulat 15, 1831-1842 (2010).
http://dx.doi.org/10.1016/j.cnsns.2009.07.017
22.
22.MM Nandeppanavar, K Vajravelu, MS Abel, and MN. Siddalingappa, “Second order slip flow and heat transfer over a stretching sheet with non-linear Navier boundary condition,” Int J Therm Sci 58, 143150 (2012).
http://dx.doi.org/10.1016/j.ijthermalsci.2012.02.019
23.
23.W.A. Khan and I. Pop, “Boundary-layer flow of a nanofluid past a stretching sheet,” Int. J. Heat Mass Transfer 53, 24772483 (2010).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.01.032
24.
24.M.R. Krishnamurthy, B.C. Prasannakumara, B.J. Gireesha, and Rama Subba Reddy Gorla, “Effect of chemical reaction on MHD boundary layer flow and meltingheat transfer of Williamson nanofluid in porous medium,” Engineering Science and Technology, an International Journal (2015), In press.
25.
25. Prasannakumara, B.J. Gireesha, and P.T. Manjunatha, “Melting phenomenon inMHD stagnation point flow of dusty fluid over a stretching sheet in the presenceof thermal radiation and non-uniform heat source/sink,” Int. J. Comput. MethodsEng. Sci. Mech. (2015), In press.
26.
26.B.C. Prasannakumara, B.J. Gireesha, and P.T. Manjunatha, “Melting phenomenon in MHD stagnation point flow of dusty fluid over a stretching sheet in the prescence of thermal radiation and non-uniform heat source/sink,” Int.J.Comput.Methods.Eng.Sci. In press.
27.
27.S. Nadeem and S.T. Hussain, “Flow and heat transfer analysis of Williamson fluid,” Appl.Nanosci 4, 1006-1012 (2014), doi:10.1007/s13204-013-0282-1. In press.
28.
28.G.K. Ramesh and B.J. Gireesha, “Influence of heat source/sink on a Maxwell fluid over a stretching surface with convective boundary condition in the prescene of nanoparticles,” Ain. Shams.Eng.J. 5, 991-998 (2014).
http://dx.doi.org/10.1016/j.asej.2014.04.003
29.
29.Kalidas Das, “Nanofluid flow over a non-linear permeable stretching sheet with partial slip,” Journal of the Egyptian Mathematical Society (2014) article in press.
30.
30.Y. Khan, M. A. Abdou, F. Naeem, Y. Ahmet, and Q. Wu, “Numerical Solution of MHD Flow over a Nonlinear Porous Stretching Sheet,” Iran. J. Chem. Eng. 31(3), 125-132 (2012).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/12/10.1063/1.4939136
Loading
/content/aip/journal/adva/5/12/10.1063/1.4939136
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/12/10.1063/1.4939136
2015-12-23
2016-09-30

Abstract

The present model is committed to the study of MHD boundary layer flow and heat transfer past a nonlinear vertically stretching porous stretching sheet with the effects of hydrodynamic and thermal slip. The boundary value problem, consisting of boundary layer equations of motion and heat transfer, which are nonlinear partial differential equations are transformed into nonlinear ordinary differential equations, with the aid of similarity transformation. This problem has been solved, using Runge Kutta fourth order method with shooting technique. The effects of various physical parameters, such as, stretching parameter m, magnetic parameter M, porosity parameter f, buoyancy parameter , Prandtl number Pr, Eckert number Ec, hydrodynamic slip parameter , and thermal slip parameter , on flow and heat transfer characteristics, are computed and represented graphically.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/12/1.4939136.html;jsessionid=8aJlTGElRwPQtgV9j-IgApqp.x-aip-live-06?itemId=/content/aip/journal/adva/5/12/10.1063/1.4939136&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/12/10.1063/1.4939136&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/12/10.1063/1.4939136'
Right1,Right2,Right3,