Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/12/10.1063/1.4939216
1.
1.P. G. Debenedetti and F. H. Stillinger, Nature 410, 259 (2001).
http://dx.doi.org/10.1038/35065704
2.
2.S. Sastry, P. G. Debenedetti, and F. H. Stillinger, Nature 393, 554 (1998).
http://dx.doi.org/10.1038/31189
3.
3.J. C. Dyre, Rev. Mod. Phys. 78, 953 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.953
4.
4.I. R. Lu, G. P. Gorler, H. J. Fecht, and R. Willnecker, J. Non-Cryst. Solids 274, 294 (2000).
http://dx.doi.org/10.1016/S0022-3093(00)00220-9
5.
5.A. R. Yavari, A. Le Moulec, A. Inoue, N. Nishiyama, N. Lupu, E. Matsubara, W. J. Botta, G. Vaughan, M. Di Michiel, and A. Kvick, Acta Mater. 53, 1611 (2005).
http://dx.doi.org/10.1016/j.actamat.2004.12.011
6.
6.Q. Hu, X.-R. Zeng, and M. W. Fu, J. Appl. Phys. 109, 053520 (2011).
http://dx.doi.org/10.1063/1.3549819
7.
7.F. Ye, W. Sprengel, R. K. Wunderlich, H. J. Fecht, and H. E. Schaefer, Proc. Natl. Acad. Sci. U. S. A. 104, 12962 (2007).
http://dx.doi.org/10.1073/pnas.0705221104
8.
8.L. F. Chua, C. W. Yuen, and H. W. Kui, Appl. Phys. Lett. 67, 614 (1995).
http://dx.doi.org/10.1063/1.115406
9.
9.H. Kato, H. S. Chen, and A. Inoue, Scr. Mater. 58, 1106 (2008).
http://dx.doi.org/10.1016/j.scriptamat.2008.02.006
10.
10.P. Bordat, F. Affouard, M. Descamps, and K. L. Ngai, Phys. Rev. Lett. 93, 105502 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.105502
11.
11.J. Guo, X. F. Bian, Y. Zhao, S. J. Zhang, T. B. Li, and C. D. Wang, J Phys-Condens Mat 19, 116103 (2007).
http://dx.doi.org/10.1088/0953-8984/19/11/116103
12.
12.J. C. Bendert, A. K. Gangopadhyay, N. A. Mauro, and K. F. Kelton, Phys. Rev. Lett. 109, 185901 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.185901
13.
13.F. H. Stillinger and P. G. Debenedetti, J. Phys. Chem. B 103, 4052 (1999).
http://dx.doi.org/10.1021/jp983831o
14.
14.Y. He, R. B. Schwarz, D. Mandrus, and L. Jacobson, J. Non-Cryst. Solids 205–207, 602 (1996).
http://dx.doi.org/10.1016/S0022-3093(96)00283-9
15.
15.N. Mattern, H. Hermann, S. Roth, J. Sakowski, M. P. Macht, P. Jovari, and J. Z. Jiang, Appl. Phys. Lett. 82, 2589 (2003).
http://dx.doi.org/10.1063/1.1567457
16.
16.N. Mattern, U. Kühn, H. Hermann, S. Roth, H. Vinzelberg, and J. Eckert, Mater. Sci. Eng. A 375–377, 351 (2004).
http://dx.doi.org/10.1016/j.msea.2003.10.125
17.
17.Y. Zhang, D. Q. Zhao, R. J. Wang, and W. H. Wang, Acta Mater. 51, 1971 (2003).
http://dx.doi.org/10.1016/S1359-6454(02)00602-X
18.
18.J. Guo, X. F. Bian, T. Lin, Y. Zhao, T. B. Li, B. Zhang, and B. A. Sun, Intermetallics 15, 929 (2007).
http://dx.doi.org/10.1016/j.intermet.2006.10.020
19.
19.A. Peker and W. L. Johnson, Appl. Phys. Lett. 63, 2342 (1993).
http://dx.doi.org/10.1063/1.110520
20.
20.See supplementary material at http://dx.doi.org/10.1063/1.4939216 for the XRD patterns for the as-cast glassy, annealed glassy and fully crystallized Vitreloy 1 and the TEM observation of the as-cast Vitreloy 1 liquid quenched from 725 K.[Supplementary Material]
21.
21.K. Ohsaka, S. K. Chung, W. K. Rhim, A. Peker, D. Scruggs, and W. L. Johnson, Appl. Phys. Lett. 70, 726 (1997).
http://dx.doi.org/10.1063/1.118250
22.
22.S. J. Chung, K. T. Hong, M. R. Ok, J. K. Yoon, G. H. Kim, Y. S. Ji, B. S. Seong, and K. S. Lee, Scr. Mater. 53, 223 (2005).
http://dx.doi.org/10.1016/j.scriptamat.2005.03.033
23.
23.S. B. Qiu and K. F. Yao, J. Alloys Compd. 475, L5 (2009).
http://dx.doi.org/10.1016/j.jallcom.2008.07.056
24.
24.X. J. Liu, C. L. Chen, X. Hui, T. Liu, and Z. P. Lu, Appl. Phys. Lett. 93, 011911 (2008).
http://dx.doi.org/10.1063/1.2953475
25.
25.A. J. Cao, Y. Q. Cheng, and E. Ma, Acta Mater. 57, 51465155 (2009).
http://dx.doi.org/10.1016/j.actamat.2009.07.016
26.
26.M. Goldstein, J. Chem. Phys. 51, 3728 (1969).
http://dx.doi.org/10.1063/1.1672587
27.
27.F. H. Stillinger and T. A. Weber, Science 225, 983 (1984).
http://dx.doi.org/10.1126/science.225.4666.983
28.
28.F. H. Stillinger, Science 267, 1935 (1995).
http://dx.doi.org/10.1126/science.267.5206.1935
29.
29.Z. T. Wang, J. Pan, Y. Li, and C. A. Schuh, Phys. Rev. Lett. 111, 135504 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.135504
30.
30.M. Q. Jiang, G. Wilde, and L. H. Dai, Mech. Mater. 81, 72 (2015).
http://dx.doi.org/10.1016/j.mechmat.2014.10.002
31.
31.P. F. Guan, M. W. Chen, and T. Egami, Phys. Rev. Lett. 104, 205701 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.205701
32.
32.H. L. Peng, M. Z. Li, and W. H. Wang, Appl. Phys. Lett. 102, 131908 (2013).
http://dx.doi.org/10.1063/1.4800531
33.
33.Y. Fan, T. Iwashita, and T. Egami, Phys. Rev. Lett. 115, 045501 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.045501
34.
34.H. W. Kui and D. Turnbull, Appl. Phys. Lett. 47, 796 (1985).
http://dx.doi.org/10.1063/1.95986
35.
35.G. Wilde, G. P. Görler, R. Willnecker, and G. Dietz, Appl. Phys. Lett. 65, 397 (1994).
http://dx.doi.org/10.1063/1.112313
36.
36.S. K. Das, J. H. Perepezko, R. I. Wu, and G. Wilde, Mater. Sci. Eng. A 304–306, 159 (2001).
http://dx.doi.org/10.1016/S0921-5093(00)01483-0
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/12/10.1063/1.4939216
Loading
/content/aip/journal/adva/5/12/10.1063/1.4939216
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/12/10.1063/1.4939216
2015-12-24
2016-12-05

Abstract

We report the linear thermal expansion behaviors of a Zr-based (Vitreloy 1) bulk metallic glass in its as-cast, annealed and crystallized states. Accompanying the glass-liquid transition, the as-cast Vitreloy 1 shows a continuous decrease in the thermal expansivity, whereas the annealed glass shows a sudden increase. The crystallized Vitreloy 1 exhibits an almost unchanged thermal expansivity prior to its melting. Furthermore, it is demonstrated that the nucleation of crystalline phases can induce a significant thermal shrinkage of the supercooled liquid, but with the growth of these nuclei, the thermal expansion again dominates. These results are explained in the framework of the potential energy landscape, advocating that the configurational and vibrational contributions to the thermal expansion of the glass depend on both, structure and temperature.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/12/1.4939216.html;jsessionid=hFGHYO1BCpethzdMnnsWAxzG.x-aip-live-03?itemId=/content/aip/journal/adva/5/12/10.1063/1.4939216&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/12/10.1063/1.4939216&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/12/10.1063/1.4939216'
Right1,Right2,Right3,