Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.D. C. Catling, Sens. Actuator A-Phys. 64, 157 (1998).
2.C. Jacq, T. Maeder, E. Haemmerle, N. Craquelina, and P. Ryser, Sens. Actuator A-Phys. 172, 135 (2011).
3.C. Pramanik and H. Saha, Mater. Manuf. Process 21, 233 (2006).
4.B. Tian, Y. L. Zhao, Z. D. Jiang, and B. Hu, Rev. Sci. Instrum. 83 (2012).
5.T. Pedersen, G. Fragiacomo, O. Hansen, and E. V. Thomsen, Sens. Actuator A-Phys. 154, 35 (2009).
6.D. Y. Chen, Y. X. Li, M. Liu, and J. B. Wang, Proc. Eurosensors Xxiv 5, 1490 (2010).
7.W. P. Eaton and J. H. Smith, 6, 530 (1997).
8.Y. Matsuoka, Y. Yamamoto, M. Tanabe, S. Shimada, K. Yamada, A. Yasukawa, and H. Matsuzaka, J. Micromech. Microeng. 5, 32 (1995).
9.Z.K. Li, L.B. Zhao, Z.Y. Ye, H.Y. Wang, Y.L. Zhao, and Z.D. Jiang, J. Phys. D: Appl. Phys. 46, 195108 (2013).
10.S Timoshenko and S Woinowsky-Krieger, Theory of plates and shells (New York: McGraw-Hill, 1959).
11.K. K. Park, H. J. Lee, G. G. Yaralioglu, A. S. Ergun, O. Oralkan, M. Kupnik, C. F. Quate, B. T. Khuri-Yakub, T. Braun, J. P. Ramseyer, H. P. Lang, M. Hegner, C. Gerber, and J. K. Gimzewski, Appl. Phys. Lett. 91, 094102 (2007).
12.G. G. Yaralioglu, S. Ergun, and B. T. Khuri-Yakub, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 2185 (2005).
13.A. S. Ergun, G. G. Yaralioglu, and B. T. Khuri-Yakub, J. Aerosp. Eng. 16, 76 (2003).
14.H. J. Lee, K. K. Park, M. Kupnik, Ö. Oralkan, and B. T. Khuri-Yakub, Anal. Chem. 83, 9314 (2011).
15.K. K. Park, H. Lee, M. Kupnik, Ö. Oralkan, J. P. Ramseyer, H. P. Lang, M. Hegner, C. Gerber, and B. T. Khuri-Yakub, Sens. Actuators B-Chem. 160, 1120 (2011).
16.B. Ahmad and R. Pratap, IEEE Sens. J. 10, 11 (2010).
17.D Y Chen, Y X Li, M Liu, and J B Wang, 24th Eurosensor Conference, Linz, Austria, 2010, pp. 1490-1493.
18.A. Nabian, G. Rezazadeh, M. Haddad-Derafshi, and A. Tahmasebi, Microsyst. Technol. 14, 235 (2008).
19.S. M. Lee, B. S. Cha, and M. Okuyama, J. Appl. Phys. 108, 074512 (2010).
20.S. Ballandras, M. Wilm, W. Daniau, A. Reinhardt, V. Laude, and R. Armati, J. Appl. Phys. 97, 034901 (2005).
21.W. You, E. Cretu, and R. Rohling, IEEE Sens. J. 11, 2159 (2011).
22.M. Olfatnia, Z. Shen, J. M. Miao, L. S. Ong, T. Xu, and M. Ebrahimi, J. Micromech. Microeng. 21, 045002 (2011).
23.M. Lax, J. Acoust. Soc. Am. 16, 5 (1944).
24.A. Prak, F. R. Blom, M. Elwenspoek, and T. S. J. Lammerink, Sens. Actuator A-Phys. 27, 691 (1991).
25.S. Talebian, G. Rezazadeh, M. Fathalilou, and B. Toosi, Mechatronics 20, 666 (2010).
26.Z. Y. Tang, S. C. Fan, W. W. Xing, Z. S. Guo, and Z. Y. Zhang, Microsyst. Technol. 17, 1481 (2011).

Data & Media loading...


Article metrics loading...



Ultra-low pressure measurement is necessary in many areas, such as high-vacuum environment monitoring, process control and biomedical applications. This paper presents a novel approach for ultra-low pressure measurement where capacitive micromachined ultrasonic transducers (CMUTs) are used as the sensing elements. The working principle is based on the resonant frequency shift of the membrane under the applied pressure. The membranes of the biased CMUTs can produce a larger resonant frequency shift than the diaphragms with no DC bias in the state-of-the-art resonantpressuresensors, which contributes to pressure sensitivity improvement. The theoretical analysis and finite element method (FEM) simulation were employed to study the relationship between the resonant frequency and the pressure. The results demonstrated excellent capability of the CMUTs for ultra-low pressure measurement. It is shown that the resonant frequency of the CMUT varies linearly with the applied pressure. A sensitivity of more than 6.33 ppm/Pa (68 kHz/kPa) was obtained within a pressure range of 0 to 100 Pa when the CMUTs were biased at a DC voltage of 90% of the collapse voltage. It was also demonstrated that the pressure sensitivity can be adjusted by the DC bias voltage. In addition, the effects of air damping and ambient temperature on the resonant frequency were also studied. The effect of air damping is negligible for the pressures below 1000 Pa. To eliminate the temperature effect on the resonant frequency, a temperature compensating method was proposed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd