Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. Figuerola, R. Di Corato, L. Manna, and T. Pellegrino, Pharmacol. Res. 62, 126 (2010).
2.Q. A. Pankhurst, N. T. K. Thanh, S. K. Jones, and J. Dobson, J. Phys. D: Appl. Phys. 42, 224001 (2009).
3.R. Hergt, S. Dutz, R. Müller, and M. Zeisberger, J. Phys.: Condens. Matter 18, S2919 (2006).
4.S. Laurent, S. Dutz, U. O. Häfeli, and M. Mahmoudi, Adv. Colloid Interface Sci. 166, 8 (2011).
5.J.-H. Lee, J.-t. Jang, J.-s. Choi, S. H. Moon, S.-h. Noh, J.-w. Kim, J.-G. Kim, I.-S. Kim, K. I. Park, and J. Cheon, Nat Nano 6, 418 (2011).
6.R. Ivkov, Int. J. Hyperther. 29, 703 (2013).
7.C. Franconi, J. Vrba, F. Micali, and F. Pesce, Int. J. Hyperthermia 27, 187 (2011).
8.A. Jordan, R. Scholz, P. Wust, H. Fähling, and F. Roland, J. Magn. Magn. Mater. 201, 413 (1999).
9.D. M. Sullivan, R. Ben-Yosef, and D. S. Kapp, Int. J. Hyperthermia 9, 627 (1993).
10.L. B. Leybovicht, R. J. Myerson, B. Emami, and W. L. Straube, Int. J. Hyperthermia 7, 917 (1991).
11.J. Carrey, B. Mehdaoui, and M. Respaud, J. Appl. Phys. 109, 083921 (2011).
12.R. E. Rosensweig, J. Magn. Magn. Mater. 252, 370 (2002).
13.T.-Y. Liu, S.-H. Hu, D.-M. Liu, S.-Y. Chen, and I. W. Chen, Nano Today 4, 52 (2009).
14.K. D. Bakoglidis, K. Simeonidis, D. Sakellari, G. Stefanou, and M. Angelakeris, IEEE Trans. Magn. 48, 1320 (2012).
15.M. Ma, Y. Wu, J. Zhou, Y. Sun, Y. Zhang, and N. Gu, J. Magn. Magn. Mater. 268, 33 (2004).
16.D. Serantes, D. Baldomir, C. Martinez-Boubeta, K. Simeonidis, M. Angelakeris, E. Natividad, M. Castro, A. Mediano, D.-X. Chen, A. Sanchez, L. Balcells, and B. Martínez, J. Appl. Phys. 108, 073918 (2010).
17.C. Martinez-Boubeta, K. Simeonidis, A. Makridis, M. Angelakeris, O. Iglesias, P. Guardia, A. Cabot, L. Yedra, S. Estrade, F. Peiro, Z. Saghi, P. A. Midgley, I. Conde-Leboran, D. Serantes, and D. Baldomir, Sci. Rep. 3, 2013.
18.E. Kita, T. Oda, T. Kayano, S. Sato, M. Minagawa, H. Yanagihara, M. Kishimoto, C. Mitsumata, S. Hashimoto, K. Yamada, and N. Ohkohchi, J. Phys. D: Appl. Phys. 43, 474011 (2010).
19.E. Kita, S. Hashimoto, T. Kayano, M. Minagawa, H. Yanagihara, M. Kishimoto, K. Yamada, T. Oda, N. Ohkohchi, T. Takagi, T. Kanamori, Y. Ikehata, and I. Nagano, J. Appl. Phys. 107, 09B321 (2010).
20.R. Hergt, S. Dutz, and M. Röder, J. Phys.: Condens. Matter 20, 385214 (2008).
21.R. Hergt, S. Dutz, and M. Zeisberger, Nanotechnology 21, 015706 (2010).
22.R. Hergt and S. Dutz, J. Magn. Magn. Mater. 311, 187 (2007).
23.U. Jeong, X. Teng, Y. Wang, H. Yang, and Y. Xia, Adv. Mater. 19, 33 (2007).
24.K. Hayashi, M. Nakamura, W. Sakamoto, T. Yogo, H. Miki, S. Ozaki, M. Abe, T. Matsumoto, and K. Ishimura, Theranostics 3, 366 (2013).
25.B. Mehdaoui, R. P. Tan, A. Meffre, J. Carrey, S. Lachaize, B. Chaudret, and M. Respaud, Phys. Rev. B 87, 174419 (2013).
26.S. L. Saville, B. Qi, J. Baker, R. Stone, R. E. Camley, K. L. Livesey, L. Ye, T. M. Crawford, and O. Thompson Mefford, J. Colloid Interface Sci. 424, 141 (2014).
27.D. Serantes, K. Simeonidis, M. Angelakeris, O. Chubykalo-Fesenko, M. Marciello, M. d. P. Morales, D. Baldomir, and C. Martinez-Boubeta, J. Phys. Chem. C 118, 5927 (2014).
28.L. C. Branquinho, M. S. Carrião, A. S. Costa, N. Zufelato, M. H. Sousa, R. Miotto, R. Ivkov, and A. F. Bakuzis, Sci. Rep. 3 (2013).
29.B. É. Kashevskii, J. eng. phys. thermophys. 81, 138 (2008).
30.X. L. Liu, E. S. G. Choo, A. S. Ahmed, L. Y. Zhao, Y. Yang, R. V. Ramanujan, J. M. Xue, D. D. Fan, H. M. Fan, and J. Ding, J. Mater. Chem. B 2, 120 (2014).
31.J. García-Otero, M. Porto, J. Rivas, and A. Bunde, J. Appl. Phys. 85, 2287 (1999).
32.R. W. Chantrell, N. Walmsley, J. Gore, and M. Maylin, Physical Review B 63, 024410 (2000).
33.W. Figueiredo and W. Schwarzacher, Physical Review B 77, 104419 (2008).
34.I. Conde-Leboran, D. Baldomir, C. Martinez-Boubeta, O. Chubykalo-Fesenko, M. del Puerto Morales, G. Salas, D. Cabrera, J. Camarero, F. J. Teran, and D. Serantes, J. Phys. Chem. C 119, 15698 (2015).
35.R. P. Tan, J. Carrey, and M. Respaud, Phys. Rev. B 90, 214421 (2014).
36.S. Ruta, R. Chantrell, and O. Hovorka, Sci. Rep. 5, 9090 (2015).
37.U. Nowak, R. W. Chantrell, and E. C. Kennedy, Phys. Rev. Lett. 84, 163 (2000).
38.X. Z. Cheng, M. B. A. Jalil, H. K. Lee, and Y. Okabe, Phys. Rev. Lett. 96, 067208 (2006).
39.P. V. Melenev, Y. L. Raikher, V. V. Rusakov, and R. Perzynski, Mathematical Models and Computer Simulations 4, 471 (2012).
40.D. Fry, A. Mohammad, A. Chakrabarti, and C. M. Sorensen, Langmuir 20, 7871 (2004).
41.J. Ge and Y. Yin, J. Mater. Chem. 18, 5041 (2008).
42.R. Fu, X. Jin, J. Liang, W. Zheng, J. Zhuang, and W. Yang, J. Mater. Chem. 21, 15352 (2011).
43.T. Wang, X. Wang, D. LaMontagne, Z. Wang, Z. Wang, and Y. C. Cao, J. Am. Chem. Soc. 134, 18225 (2012).
44.B. L. Frankamp, A. K. Boal, M. T. Tuominen, and V. M. Rotello, J. Am. Chem. Soc. 127, 9731 (2005).
45.J. Chen, A. Dong, J. Cai, X. Ye, Y. Kang, J. M. Kikkawa, and C. B. Murray, Nano Lett. 10, 5103 (2010).
46.A. H. Habib, C. L. Ondeck, P. Chaudhary, M. R. Bockstaller, and M. E. McHenry, J. Appl. Phys. 103, 07A307 (2008).
47.J. García-Otero, M. Porto, J. Rivas, and A. Bunde, Phys. Rev. Lett. 84, 167 (2000).
48.E. C. Stoner and E. P. Wohlfarth, IEEE Trans. Magn. 27, 3475 (1991).
49.V. Schaller, G. Wahnström, A. Sanz-Velasco, P. Enoksson, and C. Johansson, J. Magn. Magn. Mater. 321, 1400 (2009).
50.Z. Lu and Y. Yin, Chem. Soc. Rev. 41, 6874 (2012).
51.T. Wang, D. LaMontagne, J. Lynch, J. Zhuang, and Y. C. Cao, Chemical Society Reviews 42, 2804 (2013).
52.See supplementary material at for relevent details mentioned by main text.[Supplementary Material]

Data & Media loading...


Article metrics loading...



In the present work, we investigate the effect of dipole interactions on hyperthermia heating the cluster composed of multi superparamagnetic nanoparticles via time-quantified Monte Carlo simulation. The dynamic hysteresis loop area of non-interacting particles calculated by a modified Rosensweig’s model is shown to be proportional to the field frequency. The inverse of the total number of Monte Carlo steps per field cycle is considered as a computational frequency in our modelling. By comparing the two proportionality constants gained from the simulation and from the Rosensweig’s model, respectively, the time scale of one Monte Carlo step is estimated. The shape of the cluster is characterised by treating it as an equivalent ellipsoid. When the morphology of cluster is highly anisotropic such in a chain and cylinder, dipole interactions align the moments of the particles to the morphology anisotropy axis of the cluster. The strength of such alignment depends on the magnitude of morphology anisotropy of the cluster. The alignment helps improve heating capability of the chain and cylinder clusters at the most angles between the field direction and morphology anisotropy axis. However, when the field direction is away from the axis too much, the high energy barrier will hamper the cluster to maintain the magnetization, leading to a reduced heating efficiency. Once the cluster loses its morphology anisotropy (.. cube), the influence of dipole interactions on hysteresis losses is reduced to the minimum; the probability to obtain an improved heating becomes very low no matter with the type of particle arrangement.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd