Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/12/10.1063/1.4939514
1.
1.A. Figuerola, R. Di Corato, L. Manna, and T. Pellegrino, Pharmacol. Res. 62, 126 (2010).
http://dx.doi.org/10.1016/j.phrs.2009.12.012
2.
2.Q. A. Pankhurst, N. T. K. Thanh, S. K. Jones, and J. Dobson, J. Phys. D: Appl. Phys. 42, 224001 (2009).
http://dx.doi.org/10.1088/0022-3727/42/22/224001
3.
3.R. Hergt, S. Dutz, R. Müller, and M. Zeisberger, J. Phys.: Condens. Matter 18, S2919 (2006).
http://dx.doi.org/10.1088/0953-8984/18/38/S26
4.
4.S. Laurent, S. Dutz, U. O. Häfeli, and M. Mahmoudi, Adv. Colloid Interface Sci. 166, 8 (2011).
http://dx.doi.org/10.1016/j.cis.2011.04.003
5.
5.J.-H. Lee, J.-t. Jang, J.-s. Choi, S. H. Moon, S.-h. Noh, J.-w. Kim, J.-G. Kim, I.-S. Kim, K. I. Park, and J. Cheon, Nat Nano 6, 418 (2011).
http://dx.doi.org/10.1038/nnano.2011.95
6.
6.R. Ivkov, Int. J. Hyperther. 29, 703 (2013).
http://dx.doi.org/10.3109/02656736.2013.857434
7.
7.C. Franconi, J. Vrba, F. Micali, and F. Pesce, Int. J. Hyperthermia 27, 187 (2011).
http://dx.doi.org/10.3109/02656736.2010.521886
8.
8.A. Jordan, R. Scholz, P. Wust, H. Fähling, and F. Roland, J. Magn. Magn. Mater. 201, 413 (1999).
http://dx.doi.org/10.1016/S0304-8853(99)00088-8
9.
9.D. M. Sullivan, R. Ben-Yosef, and D. S. Kapp, Int. J. Hyperthermia 9, 627 (1993).
http://dx.doi.org/10.3109/02656739309032052
10.
10.L. B. Leybovicht, R. J. Myerson, B. Emami, and W. L. Straube, Int. J. Hyperthermia 7, 917 (1991).
http://dx.doi.org/10.3109/02656739109056459
11.
11.J. Carrey, B. Mehdaoui, and M. Respaud, J. Appl. Phys. 109, 083921 (2011).
http://dx.doi.org/10.1063/1.3551582
12.
12.R. E. Rosensweig, J. Magn. Magn. Mater. 252, 370 (2002).
http://dx.doi.org/10.1016/S0304-8853(02)00706-0
13.
13.T.-Y. Liu, S.-H. Hu, D.-M. Liu, S.-Y. Chen, and I. W. Chen, Nano Today 4, 52 (2009).
http://dx.doi.org/10.1016/j.nantod.2008.10.011
14.
14.K. D. Bakoglidis, K. Simeonidis, D. Sakellari, G. Stefanou, and M. Angelakeris, IEEE Trans. Magn. 48, 1320 (2012).
http://dx.doi.org/10.1109/TMAG.2011.2173474
15.
15.M. Ma, Y. Wu, J. Zhou, Y. Sun, Y. Zhang, and N. Gu, J. Magn. Magn. Mater. 268, 33 (2004).
http://dx.doi.org/10.1016/S0304-8853(03)00426-8
16.
16.D. Serantes, D. Baldomir, C. Martinez-Boubeta, K. Simeonidis, M. Angelakeris, E. Natividad, M. Castro, A. Mediano, D.-X. Chen, A. Sanchez, L. Balcells, and B. Martínez, J. Appl. Phys. 108, 073918 (2010).
http://dx.doi.org/10.1063/1.3488881
17.
17.C. Martinez-Boubeta, K. Simeonidis, A. Makridis, M. Angelakeris, O. Iglesias, P. Guardia, A. Cabot, L. Yedra, S. Estrade, F. Peiro, Z. Saghi, P. A. Midgley, I. Conde-Leboran, D. Serantes, and D. Baldomir, Sci. Rep. 3, 2013.
http://dx.doi.org/10.1038/srep01652
18.
18.E. Kita, T. Oda, T. Kayano, S. Sato, M. Minagawa, H. Yanagihara, M. Kishimoto, C. Mitsumata, S. Hashimoto, K. Yamada, and N. Ohkohchi, J. Phys. D: Appl. Phys. 43, 474011 (2010).
http://dx.doi.org/10.1088/0022-3727/43/47/474011
19.
19.E. Kita, S. Hashimoto, T. Kayano, M. Minagawa, H. Yanagihara, M. Kishimoto, K. Yamada, T. Oda, N. Ohkohchi, T. Takagi, T. Kanamori, Y. Ikehata, and I. Nagano, J. Appl. Phys. 107, 09B321 (2010).
http://dx.doi.org/10.1063/1.3355917
20.
20.R. Hergt, S. Dutz, and M. Röder, J. Phys.: Condens. Matter 20, 385214 (2008).
http://dx.doi.org/10.1088/0953-8984/20/38/385214
21.
21.R. Hergt, S. Dutz, and M. Zeisberger, Nanotechnology 21, 015706 (2010).
http://dx.doi.org/10.1088/0957-4484/21/1/015706
22.
22.R. Hergt and S. Dutz, J. Magn. Magn. Mater. 311, 187 (2007).
http://dx.doi.org/10.1016/j.jmmm.2006.10.1156
23.
23.U. Jeong, X. Teng, Y. Wang, H. Yang, and Y. Xia, Adv. Mater. 19, 33 (2007).
http://dx.doi.org/10.1002/adma.200600674
24.
24.K. Hayashi, M. Nakamura, W. Sakamoto, T. Yogo, H. Miki, S. Ozaki, M. Abe, T. Matsumoto, and K. Ishimura, Theranostics 3, 366 (2013).
http://dx.doi.org/10.7150/thno.5860
25.
25.B. Mehdaoui, R. P. Tan, A. Meffre, J. Carrey, S. Lachaize, B. Chaudret, and M. Respaud, Phys. Rev. B 87, 174419 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.174419
26.
26.S. L. Saville, B. Qi, J. Baker, R. Stone, R. E. Camley, K. L. Livesey, L. Ye, T. M. Crawford, and O. Thompson Mefford, J. Colloid Interface Sci. 424, 141 (2014).
http://dx.doi.org/10.1016/j.jcis.2014.03.007
27.
27.D. Serantes, K. Simeonidis, M. Angelakeris, O. Chubykalo-Fesenko, M. Marciello, M. d. P. Morales, D. Baldomir, and C. Martinez-Boubeta, J. Phys. Chem. C 118, 5927 (2014).
http://dx.doi.org/10.1021/jp410717m
28.
28.L. C. Branquinho, M. S. Carrião, A. S. Costa, N. Zufelato, M. H. Sousa, R. Miotto, R. Ivkov, and A. F. Bakuzis, Sci. Rep. 3 (2013).
http://dx.doi.org/10.1038/srep02887
29.
29.B. É. Kashevskii, J. eng. phys. thermophys. 81, 138 (2008).
http://dx.doi.org/10.1007/s10891-008-0024-5
30.
30.X. L. Liu, E. S. G. Choo, A. S. Ahmed, L. Y. Zhao, Y. Yang, R. V. Ramanujan, J. M. Xue, D. D. Fan, H. M. Fan, and J. Ding, J. Mater. Chem. B 2, 120 (2014).
http://dx.doi.org/10.1039/C3TB21146K
31.
31.J. García-Otero, M. Porto, J. Rivas, and A. Bunde, J. Appl. Phys. 85, 2287 (1999).
http://dx.doi.org/10.1063/1.369539
32.
32.R. W. Chantrell, N. Walmsley, J. Gore, and M. Maylin, Physical Review B 63, 024410 (2000).
http://dx.doi.org/10.1103/PhysRevB.63.024410
33.
33.W. Figueiredo and W. Schwarzacher, Physical Review B 77, 104419 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.104419
34.
34.I. Conde-Leboran, D. Baldomir, C. Martinez-Boubeta, O. Chubykalo-Fesenko, M. del Puerto Morales, G. Salas, D. Cabrera, J. Camarero, F. J. Teran, and D. Serantes, J. Phys. Chem. C 119, 15698 (2015).
http://dx.doi.org/10.1021/acs.jpcc.5b02555
35.
35.R. P. Tan, J. Carrey, and M. Respaud, Phys. Rev. B 90, 214421 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.214421
36.
36.S. Ruta, R. Chantrell, and O. Hovorka, Sci. Rep. 5, 9090 (2015).
http://dx.doi.org/10.1038/srep09090
37.
37.U. Nowak, R. W. Chantrell, and E. C. Kennedy, Phys. Rev. Lett. 84, 163 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.163
38.
38.X. Z. Cheng, M. B. A. Jalil, H. K. Lee, and Y. Okabe, Phys. Rev. Lett. 96, 067208 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.067208
39.
39.P. V. Melenev, Y. L. Raikher, V. V. Rusakov, and R. Perzynski, Mathematical Models and Computer Simulations 4, 471 (2012).
http://dx.doi.org/10.1134/S2070048212050079
40.
40.D. Fry, A. Mohammad, A. Chakrabarti, and C. M. Sorensen, Langmuir 20, 7871 (2004).
http://dx.doi.org/10.1021/la0494369
41.
41.J. Ge and Y. Yin, J. Mater. Chem. 18, 5041 (2008).
http://dx.doi.org/10.1039/b809958h
42.
42.R. Fu, X. Jin, J. Liang, W. Zheng, J. Zhuang, and W. Yang, J. Mater. Chem. 21, 15352 (2011).
http://dx.doi.org/10.1039/c1jm11883h
43.
43.T. Wang, X. Wang, D. LaMontagne, Z. Wang, Z. Wang, and Y. C. Cao, J. Am. Chem. Soc. 134, 18225 (2012).
http://dx.doi.org/10.1021/ja308962w
44.
44.B. L. Frankamp, A. K. Boal, M. T. Tuominen, and V. M. Rotello, J. Am. Chem. Soc. 127, 9731 (2005).
http://dx.doi.org/10.1021/ja051351m
45.
45.J. Chen, A. Dong, J. Cai, X. Ye, Y. Kang, J. M. Kikkawa, and C. B. Murray, Nano Lett. 10, 5103 (2010).
http://dx.doi.org/10.1021/nl103568q
46.
46.A. H. Habib, C. L. Ondeck, P. Chaudhary, M. R. Bockstaller, and M. E. McHenry, J. Appl. Phys. 103, 07A307 (2008).
http://dx.doi.org/10.1063/1.2830975
47.
47.J. García-Otero, M. Porto, J. Rivas, and A. Bunde, Phys. Rev. Lett. 84, 167 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.167
48.
48.E. C. Stoner and E. P. Wohlfarth, IEEE Trans. Magn. 27, 3475 (1991).
http://dx.doi.org/10.1109/TMAG.1991.1183750
49.
49.V. Schaller, G. Wahnström, A. Sanz-Velasco, P. Enoksson, and C. Johansson, J. Magn. Magn. Mater. 321, 1400 (2009).
http://dx.doi.org/10.1016/j.jmmm.2009.02.047
50.
50.Z. Lu and Y. Yin, Chem. Soc. Rev. 41, 6874 (2012).
http://dx.doi.org/10.1039/c2cs35197h
51.
51.T. Wang, D. LaMontagne, J. Lynch, J. Zhuang, and Y. C. Cao, Chemical Society Reviews 42, 2804 (2013).
http://dx.doi.org/10.1039/C2CS35318K
52.
52.See supplementary material at http://dx.doi.org/10.1063/1.4939514 for relevent details mentioned by main text.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/12/10.1063/1.4939514
Loading
/content/aip/journal/adva/5/12/10.1063/1.4939514
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/12/10.1063/1.4939514
2015-12-30
2016-12-04

Abstract

In the present work, we investigate the effect of dipole interactions on hyperthermia heating the cluster composed of multi superparamagnetic nanoparticles via time-quantified Monte Carlo simulation. The dynamic hysteresis loop area of non-interacting particles calculated by a modified Rosensweig’s model is shown to be proportional to the field frequency. The inverse of the total number of Monte Carlo steps per field cycle is considered as a computational frequency in our modelling. By comparing the two proportionality constants gained from the simulation and from the Rosensweig’s model, respectively, the time scale of one Monte Carlo step is estimated. The shape of the cluster is characterised by treating it as an equivalent ellipsoid. When the morphology of cluster is highly anisotropic such in a chain and cylinder, dipole interactions align the moments of the particles to the morphology anisotropy axis of the cluster. The strength of such alignment depends on the magnitude of morphology anisotropy of the cluster. The alignment helps improve heating capability of the chain and cylinder clusters at the most angles between the field direction and morphology anisotropy axis. However, when the field direction is away from the axis too much, the high energy barrier will hamper the cluster to maintain the magnetization, leading to a reduced heating efficiency. Once the cluster loses its morphology anisotropy (.. cube), the influence of dipole interactions on hysteresis losses is reduced to the minimum; the probability to obtain an improved heating becomes very low no matter with the type of particle arrangement.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/12/1.4939514.html;jsessionid=uv84SVpxpUMYHTAU1b-T_E6M.x-aip-live-03?itemId=/content/aip/journal/adva/5/12/10.1063/1.4939514&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/12/10.1063/1.4939514&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/12/10.1063/1.4939514'
Right1,Right2,Right3,