Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/12/10.1063/1.4939533
1.
1.R.J. Glauber, Phys. Rev. Lett. 10, 84 (1963).
http://dx.doi.org/10.1103/PhysRevLett.10.84
2.
2.D.S. Tasca, S.P. Walborn, P.H. Souto Ribeiro, F. Toscano, and P. Pellat-Finet, Phys. Rev. A 79, 033801 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.033801
3.
3.W. Zhang, Q. Zhou, J.R. Cheng, Y.D. Huang, and J.D. Peng, Eur. Phys. J. D 59, 309 (2010).
http://dx.doi.org/10.1140/epjd/e2010-00160-2
4.
4.I.A. Walmsley, Science 348, 525 (2015).
http://dx.doi.org/10.1126/science.aab0097
5.
5.P. Michler, A. Imamoğlu, M.D. Mason, P.J. Carson, G.F. Strouse, and S.K. Buratto, Nature 406, 968 (2000).
http://dx.doi.org/10.1038/35023100
6.
6.C. Santori, D. Fattal, M. Pelton, G.S. Solomon, and Y. Yamamoto, Phys. Rev. B 66, 045308 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.045308
7.
7.D.S. Ding, Z.Y. Zhou, B.S. Shi, X.B. Zou, and G.C. Guo, Opt. Express 20, 11433 (2012).
http://dx.doi.org/10.1364/OE.20.011433
8.
8.C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J.M. Fink, Jr., A.A. Abdumalikov, M. Baur, S. Filipp, M.P. da Silva, A. Blais, and A. Wallraff, Phys. Rev. Lett. 106, 243601 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.243601
9.
9.D. Roy, Phys. Rev. A 87, 063819 (2013).
http://dx.doi.org/10.1103/PhysRevA.87.063819
10.
10.J.T. Shen and S. Fan, Phys. Rev. Lett. 95, 213001 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.213001
11.
11.J.T. Shen and S. Fan, Phys. Rev. Lett. 98, 153003 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.153003
12.
12.J.T. Shen and S. Fan, Phys. Rev. A 79, 023837 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.023837
13.
13.J.Q. Liao and C.K. Law, Phys. Rev. A 82, 053836 (2010).
http://dx.doi.org/10.1103/PhysRevA.82.053836
14.
14.D. Roy, Phys. Rev. A 83, 043823 (2011).
http://dx.doi.org/10.1103/PhysRevA.83.043823
15.
15.D. Roy, Phys. Rev. Lett. 106, 053601 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.053601
16.
16.W.B. Yan, Q.B. Fan, and L. Zhou, Phys. Rev. A 85, 015803 (2012).
http://dx.doi.org/10.1103/PhysRevA.85.015803
17.
17.A. Biella, L. Mazza, I. Carusotto, D. Rossini, and R. Fazio, Phys. Rev. A 91, 053815 (2015).
http://dx.doi.org/10.1103/PhysRevA.91.053815
18.
18.X.W. Xu and Y. Li, Phys. Rev. A 90, 033832 (2014).
http://dx.doi.org/10.1103/PhysRevA.90.033832
19.
19.A.J. Hoffman, S.J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H.E. Türeci, and A.A. Houck, Phys. Rev. Lett. 107, 053602 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.053602
20.
20.Y. Liu, X.W. Xu, A. Miranowicz, and F. Nori, Phys. Rev. A 89, 043818 (2014).
http://dx.doi.org/10.1103/PhysRevA.89.043818
21.
21.T.J. Kippenberg and K.J. Vahala, Opt. Express 15, 17172 (2007).
http://dx.doi.org/10.1364/OE.15.017172
22.
22.M. Aspelmeyer, T.J. Kippenberg, and F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014).
http://dx.doi.org/10.1103/RevModPhys.86.1391
23.
23.M. Metcalfe, Appl. Phys. Rev. 1, 031105 (2014).
http://dx.doi.org/10.1063/1.4896029
24.
24.N. Didier, S. Pugnetti, Y.M. Blanter, and R. Fazio, Phys. Rev. B 84, 054503 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.054503
25.
25.K. Jacobs and A.J. Landahl, Phys. Rev. Lett. 103, 067201 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.067201
26.
26.Y. Liu, A. Miranowicz, Y.B. Gao, J. Bajer, C.P. Sun, and F. Nori, Phys. Rev. A 82, 032101 (2010).
http://dx.doi.org/10.1103/PhysRevA.82.032101
27.
27.P. Rabl, Phys. Rev. Lett. 107, 063601 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.063601
28.
28.J.Q. Liao and C.K. Law, Phys. Rev. A 87, 043809 (2013).
http://dx.doi.org/10.1103/PhysRevA.87.043809
29.
29.T. Huan, R. Zhou, and H. Ian, Phys. Rev. A 92, 022301 (2015).
http://dx.doi.org/10.1103/PhysRevA.92.022301
30.
30.L. Tian, Phys. Rev. Lett. 108, 153604 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.153604
31.
31.Y.D. Wang and A.A. Clerk, Phys. Rev. Lett. 108, 153603 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.153603
32.
32.Y.D. Wang and A.A. Clerk, New J. Phys. 14, 105010 (2012).
http://dx.doi.org/10.1088/1367-2630/14/10/105010
33.
33.C. Cheng and Y.B. Gao, Commu. Theor. Phys. 60, 531 (2013).
http://dx.doi.org/10.1088/0253-6102/60/5/03
34.
34.L.G. Villanueva, R.B. Karabalin, M.H. Matheny, D. Chi, J.E. Sader, and M.L. Roukes, Phys. Rev. B 87, 024304 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.024304
35.
35.C. Jiang, B. Chen, and K.D. Zhu, Europhys. Lett. 94, 38002 (2011).
http://dx.doi.org/10.1209/0295-5075/94/38002
36.
36.C.P. Sun, L.F. Wei, Y.-x. Liu, and F. Nori, Phys. Rev. A 73, 022318 (2006).
http://dx.doi.org/10.1103/PhysRevA.73.022318
37.
37.E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, T.J. Kippenberg, and I.R. Philip, Phys. Rev. Lett. 106, 203902 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.203902
38.
38.M. Hennrich, A. Kuhn, and G. Rempe, Phys. Rev. Lett. 94, 053604 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.053604
39.
39.H. Paul, Rev. Mod. Phys. 54, 1061 (1982).
http://dx.doi.org/10.1103/RevModPhys.54.1061
40.
40.K.M. Birnbaum, A. Boca, R. Miller, A.D. Boozer, T.E. Northup, and H.J. Kimble, Nature 436, 87 (2005).
http://dx.doi.org/10.1038/nature03804
41.
41.J. Tang, W. Geng, and X. Xu, Science Rep. 5, 9252 (2015).
http://dx.doi.org/10.1038/srep09252
42.
42.Y.L. Liu, Z.P. Liu, and J. Zhang, J. Phys. B: At. Mol. Opt. Phys. 48, 105501 (2015).
http://dx.doi.org/10.1088/0953-4075/48/10/105501
43.
43.E.A. Sete and H. Eleuch, Phys. Rev. A 91, 032309 (2015).
http://dx.doi.org/10.1103/PhysRevA.91.032309
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/12/10.1063/1.4939533
Loading
/content/aip/journal/adva/5/12/10.1063/1.4939533
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/12/10.1063/1.4939533
2015-12-30
2016-09-30

Abstract

Correlated photons are essential sources for quantum information processing. We propose a practical scheme to generate pairs of correlated photons in a controllable fashion from a double-cavity optomechanical system, where the variable optomechanical coupling strength makes it possible to tune the photon correlation at our will. The key operation is based on the repulsive or attractive interaction between the two photons intermediated by the mechanical resonator. The present protocol could provide a potential approach to coherent control of the photon correlation using the optomechanical cavity.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/12/1.4939533.html;jsessionid=KTQ9qfvtsc7KsNYYDEcEcZj9.x-aip-live-02?itemId=/content/aip/journal/adva/5/12/10.1063/1.4939533&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/12/10.1063/1.4939533&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/12/10.1063/1.4939533'
Right1,Right2,Right3,