Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/12/10.1063/1.4939566
1.
1.T. Ueno and T. Higuchi, Sen. and Act. A 129, 251 (2006).
http://dx.doi.org/10.1016/j.sna.2005.09.061
2.
2.T. Ueno and T. Higuchi, IEEE T. Magn. 41, 1082 (2005).
http://dx.doi.org/10.1109/TMAG.2005.843749
3.
3.Y. T. Yang, Y. Q. Song, D. H. Wang, J. L. Gao, L. Y. Lv, Q. Q. Cao, and Y. W. Du, J. Appl. Phys. 115, 024903 (2014).
http://dx.doi.org/10.1063/1.4861618
4.
4.A. E. Clark and D. N. Crowder, IEEE T. Magn. 21, 1945 (1985).
http://dx.doi.org/10.1109/TMAG.1985.1064034
5.
5.D. Kendall and A. R. Piercy, IEEE T. Magn. 26, 1837 (1990).
http://dx.doi.org/10.1109/20.104542
6.
6.J. B. Restorff, M. W. Fogle, and A. E. Clark, J. Appl. Phys. 87, 5786 (2000).
http://dx.doi.org/10.1063/1.372522
7.
7.X. J. Zheng and L. Sun, J. Appl. Phys. 100, 063906 (2006).
http://dx.doi.org/10.1063/1.2338834
8.
8.D. G. Zhang, M. H. Li, and H. M. Zhou, AIP ADV. 5, 010510 (2015).
9.
9.Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature. 432, 84 (2004).
http://dx.doi.org/10.1038/nature03028
10.
10.R. A. Wolf and S. T. McKinstry, J. Appl. Phys. 95, 1397 (2004).
http://dx.doi.org/10.1063/1.1636530
11.
11.H. M. Zhou, X. W. Ou, Y Xiao, S. X. Qu, and H. P. Wu, Smart Mater. Struct. 22, 035018 (2013).
http://dx.doi.org/10.1088/0964-1726/22/3/035018
12.
12.X. L. Cui and H. M. Zhou, Chin. Phys B 24, 077506 (2015).
http://dx.doi.org/10.1088/1674-1056/24/7/077506
13.
13.H. Talleb and Z. Ren, J. Alloys Compd 615, 65 (2014).
http://dx.doi.org/10.1016/j.jallcom.2014.06.121
14.
14.J. G. Wan, J. M. Liu, G. H. Wang, and C. W. Nan, Appl. Phys. Lett. 88, 182502 (2006).
http://dx.doi.org/10.1063/1.2199967
15.
15.Y. M. Jia, S. W. Or, H. L. W. Chan, X. Y. Zhao, and H. S. Luo, Appl. Phys. Lett. 88, 242902 (2006).
http://dx.doi.org/10.1063/1.2212054
16.
16.Y. M. Jia, F. F. Wang, X. Y. Zhao, H. S. Luo, S. W. Or, and H. L. W. Chan, Compos. Sci. Technol. 68, 1440 (2008).
http://dx.doi.org/10.1016/j.compscitech.2007.10.046
17.
17.Y. M. Jia, H. S. Luo, S. W. Or, Y. J. Wang, and H. L. W. Chan, Chin. Sci. Bull. 53, 2129 (2008).
http://dx.doi.org/10.1007/s11434-008-0106-y
18.
18.T. Wu, C. M. Chang, T. K. Chung, and G. Carman, IEEE T. Magn. 45, 4333 (2009).
http://dx.doi.org/10.1109/TMAG.2009.2024546
19.
19.J. P. Zhou, Y. Y. Guo, Z. Z. Xi, P. Liu, S. Y. Lin, G. Liu, and H. W. Zhang, Appl. Phys. Lett. 93, 152501 (2008).
http://dx.doi.org/10.1063/1.2998699
20.
20.J. P. Zhou, W. Zhao, Y. Y. Guo, P. Liu, and H. W. Zhang, J. Appl. Phys. 105, 063913 (2009).
http://dx.doi.org/10.1063/1.3097769
21.
21.J. P. Zhou, P. Wang, J. Yang, P. Liu, and H. W. Zhang, J. Appl. Phys. 111, 033915 (2012).
http://dx.doi.org/10.1063/1.3684604
22.
22.T. Wu, T. K. Chung, C. M. Chang, S. Keller, and G. P. Carman, J. Appl. Phys. 106, 054114 (2009).
http://dx.doi.org/10.1063/1.3212993
23.
23.J. L. Hockel, T. Wu, and G. P. Carman, J. Appl. Phys. 109, 064106 (2011).
http://dx.doi.org/10.1063/1.3553885
24.
24.M. Staruch, J. F. Li, Y. Wang, D. Viehland, and P. Finkel, Appl. Phys. Lett. 105, 152902 (2014).
http://dx.doi.org/10.1063/1.4898039
25.
25.B. Tong, X. F. Yang, J. Ouyang, G. Q. Lin, and S. Chen, J. Alloys. Compd. 563, 51 (2013).
http://dx.doi.org/10.1016/j.jallcom.2013.01.150
26.
26.S. H. Zhang, J. P. Zhou, Z. Shi, P. Liu, and C. Y. Deng, J. Alloys. Compd. 590, 46 (2014).
http://dx.doi.org/10.1016/j.jallcom.2013.12.065
27.
27.Y. K. Fetisov, V. M. Petrov, and G. Srinivasana, J. Mater. Res. 22, 2074 (2007).
http://dx.doi.org/10.1557/jmr.2007.0262
28.
28.P. Record, C. Popov, J. Fletcher, E. Abraham, Z. Huang, H. Chang, and R. W. Whatmore, Sens. Actuators, B. 126, 344 (2007).
http://dx.doi.org/10.1016/j.snb.2007.05.047
29.
29.N. Zhang, B. W. Wang, and W. M. Huang, Adv. Mater. Res. 298, 157 (2011).
http://dx.doi.org/10.4028/www.scientific.net/AMR.298.157
30.
30.J. P. Zhou, Y. J. Ma, G. B. Zhang, and X. M. Chen, Appl. Phys. Lett. 104, 202904 (2014).
http://dx.doi.org/10.1063/1.4878559
31.
31.G. Engdahl, Elsevier Inc. (2000).
32.
32.S. X. Dong, J. F. Li, and D. Viehland, IEEE Trans Ultrason Ferr Freq Contr 50, 1253 (2003).
http://dx.doi.org/10.1109/TUFFC.2003.1244741
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/12/10.1063/1.4939566
Loading
/content/aip/journal/adva/5/12/10.1063/1.4939566
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/12/10.1063/1.4939566
2015-12-31
2016-12-05

Abstract

For the converse magnetoelectric coupling effect of the piezoelectric/magnetostrictive/piezoelectric tri-layer symmetric magnetoelectric laminates, based on the nonlinear thermo-magneto-mechanical constitutive equations of the giant magnetostrictive materials and the thermo-electro-mechanical constitutive equations of the piezoelectric materials, according to Newton’s second law and the magnetic circuit theorem, an equivalent circuit is established. Then an expression of the converse magnetoelectric coefficient describing nonlinear thermo-magneto-electro-mechanical coupling is established. The curve of the nonlinear converse magnetoelectric coefficient versus the bias magnetic field, is predicted effectively by the expression, and the predictions are in good agreement with the experimental result both qualitatively and quantitatively. Furthermore, the model can predict the complex influences of the bias magnetic field, the stress and the ambient temperature on the converse magnetoelectric coefficient. It can be found from these predictions that the converse magnetoelectric coefficient decreases with the increasing temperature and increases with the increasing tensile stress. Under the common effect of the ambient temperature and the stress, it is also found that the converse magnetoelectric coefficient changes sharply with the ambient temperature when the tensile stress is applied on the laminates, but it has a good stability of temperature when a large compressive stress is applied. Therefore, this work contributes to the researches on the giant converse magnetoelectric coefficient and the designs of magnetoelectric devices based on the converse magnetoelectric coupling.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/12/1.4939566.html;jsessionid=UxFwZxMeMQA2vjsVt6Qbqo2f.x-aip-live-06?itemId=/content/aip/journal/adva/5/12/10.1063/1.4939566&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/12/10.1063/1.4939566&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/12/10.1063/1.4939566'
Right1,Right2,Right3,