Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.G.S. He, J.D. Bhawalkar, C.F. Zhao, and P.N. Prasad, Appl. Phys. Lett. 67, 2433 (1995).
2.M.A.M. Versteegh and J.I. Dijkhuis, Opt. Lett. 36, 2776 (2011).
3.W.R. Zipfel, R.M. Williams, and W.W. Webb, Nat Biotech 21, 1369 (2003).
4.W. Denk, Proc. Natl. Acad. Sci. USA 91, 6629 (1994).
5.S.W. Hell, M. Booth, S. Wilms, C.M. Schnetter, A.K. Kirsch, D.J. Arndt-Jovin, and T.M. Jovin, Opt. Lett. 23, 1238 (1998).
6.A. Hayat, A. Nevet, P. Ginzburg, and M. Orenstein, Semicond. Sci. Tech. 26, 083001 (2011).
7.C. Xu and W.W. Webb, J. Opt. Soc. Am. B 13, 481 (1996).
8.M. A. Albota, C. Xu, and W.W. Webb, Appl. Opt. 37, 7352 (1998).
9.Y. Tan, Q. Zhang, J. Yu, X. Zhao, Y. Tian, Y. Cui, X. Hao, Y. Yang, and G. Qian, Dyes and Pigments 97, 58 (2013).
10.A. Nag, A. K. De, and D. Goswami, J. Phys. B: At. Mol. Opt. Phys. 42, 065103 (2009).
11.Y. Xia, Y. Jiang, R. Fan, Z. Dong, W. Zhao, D. Chen, and G. Umesh, Opt. Laser Technol. 41, 700 (2009).
12.N.S. Makarov, M. Drobizhev, and A. Rebane, Opt. Express 16, 4029 (2008).
13.M. Drobizhev, S. Tillo, N.S. Makarov, T.E. Hughes, and A. Rebane, J. Phys. Chem. B 113, 855 (2009).
14.P. Sperber and A. Penzkofer, Opt. Quant. Electron. 18, 381 (1986).
15.J.P. Hermann and J. Ducuing, Opt. Commun. 6, 101 (1972).
16.K.D. Belfield, D.J. Hagan, E.W. Van Stryland, K.J. Schafer, and R.A. Negres, Org. Lett. 1, 1575 (1999).
17.S.A Kovalenko, A.L. Dobryakov, J. Ruthmann, and N.P. Ernsting, Phys. Rev. A 59, 2369-2383 (1999).
18.C.M. Cirloganu, L.A. Padilha, D.A. Fishman, S. Webster, D.J. Hagan, and E.W. Van Stryland, Opt. Express 19, 22951 (2011).
19.L.A. Padilha, J. Fu, D.J. Hagan, E.W. Van Stryland, C.L. Cesar, L.C. Barbosa, C.H.B. Cruz, D. Buso, and A. Martucci, Phys. Rev. B 75, 075325 (2007).
20.G.S. He, L.-S. Tan, Q. Zheng, and P.N. Prasad, Chem. Rev. 108, 1245 (2008).
21.Y.R. Shen, The Principles of Nonlinear Optics (J. Wiley, New York, 1984), p. 203.
22.K.W. DeLong, R. Trebino, J. Hunter, and W.E. White, J. Opt. Soc. Am. B 11, 2206 (1994).
23.B. Mallick, A. Lakhsmanna, and S. Umapathy, J. Raman Spectrosc. 42, 1883 (2011).
24.J.M. Hales, D.J. Hagan, E.W. Van Stryland, K.J. Schafer, A.R. Morales, K.D. Belfield, P. Pacher, O. Kwon, E. Zojer, and J.L. Bredas, J. Chem. Phys 121, 3152 (2004).
25.E. Roussakis, J.A. Spencer, C.P. Lin, and S.A. Vinogradov, Anal. Chem. 86, 5937 (2014).
26.Gaussian 03, Revision D.02, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople, Gaussian, Inc., Wallingford CT,2004.
27.Gaussian 09, Revision A.02, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian, Inc., Wallingford CT,2009.
28.F. Terenziani, C. Katan, E. Badaeva, S. Tretiak, and M. Blanchard-Desce, Advanced Materials 20, 4641 (2008).
29.S. Tretiak and V. Chernyak, J. Chem. Phys. 119, 8809 (2003).
30.See supplementary material at for the detailed information for theoretical calculation.[Supplementary Material]
31.L. Ji, R.M. Edkins, L.J. Sewell, A. Beeby, A.S. Batsanov, K. Fucke, M. Drafz, J.A.K. Howard, O. Moutounet, F. Ibersiene, A. Boucekkine, E. Furet, Z. Liu, J.-F. Halet, C. Katan, and T.B. Marder, Chem. Eur. J. 2014(20), 13618–13635.
32.D. Jacquemin and C. Adamo, Computational Molecular Electronic Spectroscopy with TD-DFT, Topics in Current Chemistry (Springer Berlin Heidelberg, 2015), pp. 1-29.
33.C. Katan, P. Savel, B. M. Wong, T. Roisnel, V. Dorcet, J.-L. Fillaut, and D. Jacquemin, Phys. Chem. Chem. Phys. 16, 90649073 (2014).
34.W. Liang, H. Ma, H. Zang, and C. Ye, Int. J. Quantum Chem. 115, 550563 (2015).
35.J. Cascante-Vindas, A. Díez, J. L. Cruz, and M.V. Andrés, Opt. Express 18, 14535 (2010).
36.S. Boinapally, B. Huang, M. Abe, C. Katan, J. Noguchi, S. Watanabe, H. Kasai, B. Xue, and T. Kobayashi, J. Org. Chem. 79, 7822 (2014).

Data & Media loading...


Article metrics loading...



This study demonstrates a measurement system for a non-degenerate two-photon absorption (NDTPA) spectrum. The NDTPA light sources are a white light super continuum beam (WLSC, 500 ∼ 720 nm) and a fundamental beam (798 nm) from a Ti:Sapphire laser. A reliable broadband NDTPA spectrum is acquired in a single-shot detection procedure using a 128-channel lock-in amplifier. The NDTPA spectra for several common laser dyes are measured. Two photon absorption cross section enhancements are found in the experiment and validated by theoretical calculation for all of the chromophores.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd