Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/12/10.1063/1.4939569
1.
1.High Power Microwaves, 2nd ed., edited by J. Benford, J. Swegle, and E. Schamiloglu (Taylor and Francis, Boca Raton, 2007).
2.
2.High Power Microwave Sources and Technologies, edited by R. J. Barker and E. Schamiloglu (IEEE Press/John Wiley and Sons, New York, 2001).
3.
3.R. B. Miller, W. F. McCullough, K. T. Lancaster, and C. A. Muehlenweg, IEEE Trans Plasma Sci. 20, 332 (1992).
http://dx.doi.org/10.1109/27.142834
4.
4.I. Ben-Zvi, Physica C 441, 21 (2006).
http://dx.doi.org/10.1016/j.physc.2006.03.052
5.
5.I. Okuda, E. Takahashi, and Y. Owadano, Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers 40, 5407 (2001).
http://dx.doi.org/10.1143/JJAP.40.5407
6.
6.S. Hao, C. Dong, M. Li, X. Zhang, and P. Wu, International Journal of Modern Physics B 23, 1713 (2009).
http://dx.doi.org/10.1142/S0217979209061512
7.
7.X. X. Lin, Y. T. Li, B. C. Liu, F. Du, S. J. Wang, L. M. Chen, L. Zhang, X. L. Liu, J. L. Ma, X. Lu, W. M. Wang, Z. Y. Wei, and J. Zhang, Laser Part. Beams 30, 39 (2012).
http://dx.doi.org/10.1017/S0263034611000668
8.
8.G. Gaertner, J. Vac. Sci. Technol. B 30, 060801 (2012).
http://dx.doi.org/10.1116/1.4747705
9.
9.A. Persaud, O. Waldmann, R. Kapadia, K. Takei, A. Javey, and T. Schenkel, Rev. Sci. Instrum. 83, 02B312 (2012).
http://dx.doi.org/10.1063/1.3672437
10.
10.G. A. Mesyats, JETP Lett. 7, 95 (1993).
11.
11.G. A. Mesyats, Herald of the Russian Academy of Sciences 84, 242 (2014).
http://dx.doi.org/10.1134/S1019331614040017
12.
12.E. Garate, R. MacWilliams, D. Voss, A. Lovesee, K. Hendricks, T. Spencer, M. C. Clark, and A. Fisher, Rev. Sci. Instrum. 66, 2528 (1995).
http://dx.doi.org/10.1063/1.1146504
13.
13.R. B. Miller, Journ. Appl. Phys. 84, 3880 (1998).
http://dx.doi.org/10.1063/1.368567
14.
14.S. A. Barengolts, M. Y. Kreindei, and E. A. Litvinov, Surf. Sci. 266, 126 (1992).
http://dx.doi.org/10.1016/0039-6028(92)91008-Y
15.
15.V. G. Pavlov, A. Rabinovish, and V. N. Shrednik, Zh. Tech. Fiz. (In Russian) 45, 2126 (1975).
16.
16.V. V. Paranjape and B. V. Paranjape, Phys. Rev. 166, 757 (1968).
http://dx.doi.org/10.1103/PhysRev.166.757
17.
17.D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, Journ. Appl. Phys. 93, 793 (2003).
http://dx.doi.org/10.1063/1.1524305
18.
18.R. Yang, G. Chen, and M. S. Dresselhaus, Nano Letters 5, 1111 (2005).
http://dx.doi.org/10.1021/nl0506498
19.
19.G. N. Fursey, M. A. Polyakov, L. A. Shirochin, and A. N. Saveliev, Applied Surface Science 215, 286 (2003).
http://dx.doi.org/10.1016/S0169-4332(03)00298-8
20.
20.A. Anders, Cathodic Arcs: From Fractal Spots to Energetic Condensation (Springer-Verlag, New York, 2008).
21.
21.P. Rumbach and D. B. Go, Journal of Applied Physics 112, 103302 (2012).
http://dx.doi.org/10.1063/1.4764344
22.
22.F. B. Hilderbrand, Advanced Calculus for Applications (Prentice Hall, Englewood Cliffs, 1962).
23.
23.R. Miller, Y. Y. Lau, and J. H. Booske, “Electric field distribution on knife-edge field emitters,” Appl. Phys. Lett. 91, 074105 (2007).
http://dx.doi.org/10.1063/1.2771375
24.
24.A. Majzoobi, R. P. Joshi, A. Neuber, and J. Dickens, “Analysis of cathode emission phenomena: Effects of barrier thinning, field enhancements and local heating,” in Proc. IEEE Pulsed Power Conference, Austin, TX, 2015, pp. 1-4(DOI: 10.1109/PPC.2015.7297005).
25.
25.H. Qiu, R. P. Joshi, A. A. Neuber, and J. C. Dickens, Semiconductor Science and Technology 30, 105038 (2015).
http://dx.doi.org/10.1088/0268-1242/30/10/105038
26.
26.W. S. Boyle and P. Kisliuk, Phys. Rev. 97, 255 (1955).
http://dx.doi.org/10.1103/PhysRev.97.255
27.
27.G. Ecker and K. G. Muller, Journ. Appl. Phys. 30, 1466 (1959).
http://dx.doi.org/10.1063/1.1735372
28.
28.M. I. Kaganov, I. M. Lifshitz, and L. V. Tanatarov, Sov. Phys. JETP 4, 173 (1957).
29.
29.S. I. Anisimov, A. M. Bonch-Bruevich, M. A. El’yashevich, Y. A. Imas, N. A. Pavlenko, and G. R. Romanov, Sov. Phys. Tech. Phys. 11, 945 (1967).
30.
30.S. I. Anisimov, B. L. Kapeliovitch, and T. L. Perel’man, Journ. Exp. Theor. Phys. 39, 375 (1974).
31.
31.A. Giri, J. T. Gaskins, B. M. Foley, R. Cheaito, and P. E. Hopkins, Journ. Appl. Phys. 117, 044305 (2015).
http://dx.doi.org/10.1063/1.4906553
32.
32.A. B. Pippard, “Ultrasonic attenuation in metals,” Philos. Mag. 46, 1104 (1955).
http://dx.doi.org/10.1080/14786441008521122
33.
33.S. Tamura, Phys. Rev. B 31, 2575 (1985).
34.
34.J. M. Ziman, Electrons and Phonons (Clarendon Press, Oxford, 1960).
35.
35.R. A. Matula, J. Phys. Chem. Ref. Data 8, 1147 (1979).
http://dx.doi.org/10.1063/1.555614
36.
36.E. Grüneisen, Ann. Phys. 16, 530 (1933).
http://dx.doi.org/10.1002/andp.19334080504
37.
37.F. Bloch, Z. Phys. 59, 208 (1930).
http://dx.doi.org/10.1007/BF01341426
38.
38.N. D. Lang and W. Kohn, Phys. Rev. 3, 1215 (1971).
http://dx.doi.org/10.1103/PhysRevB.3.1215
39.
39.T. T. Tsong and E. W. Muller, Phys. Rev. 181, 530 (1969).
http://dx.doi.org/10.1103/PhysRev.181.530
40.
40.R. P. Joshi, P. G. Neudeck, and C. Fazi, Journ. Appl. Phys. 88, 265 (2000).
http://dx.doi.org/10.1063/1.373651
41.
41.E. Chavez-Angel, J. S. Reparaz, J. Gomis-Bresco, M. R. Wagner, J. Cuffe, B. Graczykowski, A. Shchepetov, H. Jiang, M. Prunnila, J. Ahopelto, F. Alzina, and C. M. Sotomayor Torres, APL Materials 2, 012113 (2014).
http://dx.doi.org/10.1063/1.4861796
42.
42.E. W. Müller, Phys. Rev. 102, 618 (1956).
http://dx.doi.org/10.1103/PhysRev.102.618
43.
43.Z. Insepov, J. H. Norem, and A. Hassanein, “Physical Review Special Topics – Accelerators and Beams,” 7, 22001 (2004).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/12/10.1063/1.4939569
Loading
/content/aip/journal/adva/5/12/10.1063/1.4939569
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/12/10.1063/1.4939569
2015-12-31
2016-09-25

Abstract

This contribution presents a model analysis for the initiation of explosive emission; a phenomena that is observed at cathodesurfaces under high current densities. Here, localized heating is quantitatively evaluated on ultrashort time scales as a potential mechanism that initiates explosive emission, based on a two-temperature, relaxation time model. Our calculations demonstrate a strong production of nonequilibrium phonons, ultimately leading to localized melting. Temperatures are predicted to reach the cathode melting point over nanosecond times within the first few monolayers of the protrusion. This result is in keeping with the temporal scales observed experimentally for the initiation of explosive emission.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/12/1.4939569.html;jsessionid=6UxG_SpI-IJChPC7NMv728sy.x-aip-live-03?itemId=/content/aip/journal/adva/5/12/10.1063/1.4939569&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/12/10.1063/1.4939569&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/12/10.1063/1.4939569'
Right1,Right2,Right3,