Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Jingbi You, Letian Dou, Ken Yoshimura, Takehito Kato, Kenichiro Ohya, Tom Moriarty, Keith Emery, Chun-Chao Chen, Jing Gao, Gang Li, and Yang Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun. 4, 1446-1-1446-10 (2013).
2.J.E. Carle, N. Helgesen, K. Zawacka, M. V. Madsen, E. Bundgaard, and F. C. Krebs, “Comparative Study of Fluorine Substituents for Enhanced Stability of Flexible and ITO-Free High-Performance Polymer Solar Cells,” Journal of Polymer Science Part B: Polymer Physics 52, 893-899 (2014).
3.T. L. Nguyen, H. Choi, S.-J. Ko, M. A. Uddin, B. Walker, S. Yum, J.-E. Jeong, M. H. Yun, T. J. Shin, S. Hwang, J. Y. Kim, and H. Y. Woo, “Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a ≈ 300 nm thick conventional single-cell device,” Energy Environ. Sci. 7, 3040-3051 (2014).
4.N. Wang, Z. Chen, W. Wei, and Z. Jiang, “Fluorinated benzothiadiazole-based conjugated polymers for high-performance polymer solar cells without any processing additives or post-treatments,” J. Am. Chem. Soc. 135, 17060-17068 (2013).
5.Ning Wang, Zheng Chen, Wei Wei, and Zhenhua Jiang, “Fluorinated Benzothiadiazole-Based Conjugated Polymers for High-Performance Polymer Solar Cells without Any Processing Additives or Post-treatments,” J. Am. Chem. Soc. 135, 17060-17068 (2013) DOI: 10.1021/ja 409881g.
6.A. Pivrikas, N. S. Sariciftci, G. Juska, and R. Osterbacka, “A Review of Charge Transport and Recombination in Polymer/Fullerene Organic Solar Cells,” Prog. Photovolt: Res. Appl 15, 677696 (2007) DOI: 10.1002/pip.791.
7.A. Salleo, “Charge transport in polymeric transistors,” Materials today 10, 38-45 (2007).
8.S.C. Jain, M. Willander, and V. Kumar, “Conducting Organic Materials and Devices,” Semiconductors and Semimetals 81 (2007).
9.G. Juška, K. Arlauskas, M. Vilinas, and J. Kočka, “Extraction current transients: New method of study of charge transport in microcrystalline silicon,” Phys. Rev. Lett. 84, 4946 (2000).
10.G. Juška, K. Arlauskas, M. Vilinas, K. Genevièius, R. Österbacka, and H. Stubb, “Charge transport in π-conjugated polymers from extraction current transients,” Phys. Rev. B 62, R16235(R) (2000) DOI: 10.1103/PhysRevB.62.R16235.
11.J. Lorrmann, B. H. Badada, O. Inganäs, V. Dyakonov, and C. Deibel, “Charge carrier extraction by linearly increasing voltage: Analytic framework and ambipolar transients,” J. Appl. Phys. 108, 113705 (2010)
12.M.T. Neukom, N.A. Reinke, and B. Ruhstaller, “Charge extraction with linearly increasing voltage: A numerical model for parameter extraction,” Solar Energy 85, 1250 (2011).
13.P. Vanlaeke’, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D’Haen, P. Heremans, J. Poortmans, and J.V. Manca, “P3HT/PCBM bulk heterojunction solar cells: Relation between morphology and electro-optical characteristics,” Solar Energy Mater. Solar.Cells 90, 2150-2158 (2006).
14.Youngkyoo Kim, Steffan Cook, Sachetan M. Tuladhar, Stelios A. Choulis, Jenny Nelson, James R. Durrant, Donal D. C. Bradley, Mark Giles, Iain McCulloch, Chang-Sik Ha, and Moonhor Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells,” Nature Materials 5, 197203 (2006) doi: 10.1038/nmat1574.
15.B. Rezek, J. Cermak, A. Kromka, M. Ledinsky, and J. Kocka, “Photovoltage effects in polypyrrole – diamond nanosystem,” Diam. Relat. Mater 18, 249-252 (2009).
16.J. Toušek, J. Toušková, Z. Remeš, J. Čermák, J. Kousal, D. Kindl, and I. Kuřitka, “Exciton diffusion length and concentration of holes in MEH-PPV polymer using the surface voltage and surface photovoltage methods,” Chem Phys Letters 552, 49-52 (2012).
17.A.J. Mozer, N.S. Sariciftci, L. Lutsen, D. Vanderzande, R. Osterbacka, M. Westerling, and G. Juska, “Charge transport and recombination in bulk heterojunction solar cells studied by the photoinduced charge extraction in linearly increasing voltage technique,” Appl. Phys. Lett. 86, 112104 (2005).
18.P. Stallinga, Electrical Characterization of Organic Electronic Materials and Device (J. Wiley and Sons, Ltd., Publication, West Sussex UK, 2009).
19.Wei-Yang Chou, Shih-Ting Lin, Horng-Long Cheng, Fu-Ching Tang, Yow-Jon Lin, Chang-Feng You, and Yu-Wu Wang, “Excimer Laser Irradiation Induced Suppression of OFF-State Leakage Current in Organic Transistors,” Appl.Phys. Lett. 90, 222103-1-222103-3 (2007).
20.V. Shrotriya, J. Ouyang, R.J. Tseng, G. Li, and Y. Yang, “Absorption spectra modification in poly(3-hexylthiophene):methanofullerene blend thin flms,” Chem Phys Lett 143, 138-143 (2005).
21.J. Wu, G. Yue, Y. Xiao, J. Lin, M. Huang, Z. Lan, Q. Tang, Y. Huang, L. Fan, S. Yin, and T. Sato, “Homo P3HT :An ultraviolet responsive hybrid solar cell based on titania/poly(3-hexylthiophene),” Sci Rep 3, 1283 (2013), doi:10.1038/srep01283.
22.X-L Hu, L-J Zuo, Y-X Nan, M. Helgesen, O. Hagemann, E. Bundgaard, M-M Shi, F.C. Krebs, and H-Z Chen, “Fine tuning the HOMO energy levels of polythieno 3,4-b thiophene derivatives by incorporation of thiophene-3,4-dicarboxylate moiety for photovoltaic applications,” Synt. Metals 162, 2005-9 (2012).
23.M. Stephen, S. Karuthedath, T. Sauermann, K. Genevicius, and G. Juska, “Degradation Effect on Charge Carrier Transport in P3HT:PCBM Solar Cells Studied by Photo-CELIV and ToF,” Proc. Of SPIE 9184, 918424-1 SPIE Organic Photonics+ Electronics, 918424-918424-6.
24.K.M. Coakley, B.S. Srinivasan, J.M. Ziebatth, CH. Goh, Y. Lieu, and M.D. McGehee, “Enhanced Hole Mobility in Regioregular Polythiophene Infiltrated in Straight Nanopores,” Adv. Funct. Mater. 15, 1927-1932 (2005).
25.S.A. Choulis, Y. Kim, J. Nelson, D.D.C. Bradley, M. Giles, M. Shkunov, and I. McCulloch, “High ambipolar and balanced carrier mobility in regioregular poly(3-hexythiophene),” Appl. Phys Lett. 85, 3890-3892 (2004).
26.V. Chellappan, G. M. Ng, M.J. Tan, W-P Goh, and F. Zhu, “Imbalanced charge mobility in oxygen treated polythiophene/fullerene based bulk heterojunction solar cells,” Appl Phys. Lett. 95, 263305 (2009).
27.J. Schafferhans, A. Baumann, C. Deibel, and V. Dyakonov, “Trap distribution and the impact of oxygen –induced traps on the charge transport in poly(hexylthiophene),” Appl. Phys. Lett. 93, 093303 (2008).
28.R. Hanfland, M.A. Fischer, W. Brutting, U. Wurfel, and R.C.I. MacKenzie, “The physical meaning of charge extraction by linearly increasig voltage transients from organic solar cells,” Appl. Phys. Letters 103, 063904-1-063904-4 (2013).
29.J. Toušek, J. Toušková, Z. Remeš, J. Kousal, S.A. Gevorgyan, and F.C. Krebs, “Exciton diffusion length in some thermocleavable polythiophenes by the surface photovoltage method,” Synth Metals 161, 2727-31 (2011).
30.J. Tousek and J. Touskova, “A novel approach to the surface photovoltage method,” Sol. Energy Mat.&Sol.Cells (2008), Doi:10.1016/j.solmat.2008.02.033.

Data & Media loading...


Article metrics loading...



Measurements of electrical conductivity, electron work function,carrier mobility of holes and the diffusion length of excitons were performed on samples of conjugated polymers relevant to polymersolar cells. A state of the art fluorinated benzothiadiazole based conjugated copolymer (PBDT − DTBTff) was studied and benchmarked against the reference polymer poly-3-hexylthiophene (P3HT). We employed, respectively, four electrode conductivity measurements, Kelvin probe work functionmeasurements,carrier mobility using charge extraction by linearly increasing voltage (CELIV) measurements and diffusion length determinaton using surface photovoltage measurements.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd