Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/2/10.1063/1.4907879
1.
1.W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
http://dx.doi.org/10.1038/nature01937
2.
2.S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
3.
3.S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
http://dx.doi.org/10.1038/nature04594
4.
4.J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004).
http://dx.doi.org/10.1126/science.1098999
5.
5.F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, J. Opt. A-Pure Appl. Opt. 7, S97 (2005).
http://dx.doi.org/10.1088/1464-4258/7/2/013
6.
6.A. P. Hibbins, B. R. Evans, and J. R. Sambles, Science 308, 670 (2005).
http://dx.doi.org/10.1126/science.1109043
7.
7.C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, Nat. Photon. 2, 175 (2008).
http://dx.doi.org/10.1038/nphoton.2007.301
8.
8.W. Zhu, A. Agrawal, and A. Nahata, Opt. Exp. 16, 6216-6226 (2008).
http://dx.doi.org/10.1364/OE.16.006216
9.
9.S. Maier, S. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, Phys. Rev. Lett. 97, 176805 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.176805
10.
10.A. I. Fernández-Domínguezf, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, Phys. Rev. B 79, 233104 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.233104
11.
11.A. I. Fernandez-Dominguez, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, Opt. Lett. 34, 2063-2065 (2009).
http://dx.doi.org/10.1364/OL.34.002063
12.
12.D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Meoreno, and E. Moreno, Opt. Exp. 18(2), 754-764 (2010).
http://dx.doi.org/10.1364/OE.18.000754
13.
13.W. S. Zhao, O. M. Eldaiki, R. X. Yang, and Z. L. Lu, Opt. Exp. 18(20), 21498-21503 (2010).
http://dx.doi.org/10.1364/OE.18.021498
14.
14.M. L. Nesterov, D. Martin-Cano, A. I. Fernandez-Dominguez, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, Opt. Lett. 35(3), 423-425 (2010).
http://dx.doi.org/10.1364/OL.35.000423
15.
15.Elizabeth M. G. Brock, E. Hendry, and Alastair P. Hibbins, Appl. Phys. Lett. 99, 051108 (2011).
http://dx.doi.org/10.1063/1.3622646
16.
16.Y. G. Ma, L. Lan, S. M. Zhong, and C. K. Ong, Opt. Exp. 19(22), 21189-21198 (2011).
http://dx.doi.org/10.1364/OE.19.021189
17.
17.D. Martin-Cano, O. Quevedo-Teruel, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, Opt. Lett. 36(23), 4635-4637 (2011).
http://dx.doi.org/10.1364/OL.36.004635
18.
18.B. Gupta, S. Pandey, and A. Nahata, Opt. Exp. 22(3), 2868-880 (2014).
http://dx.doi.org/10.1364/OE.22.002868
19.
19.H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, Laser Photon. Rev. 10, 00118 (2013).
20.
20.X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, Appl. Phys. Lett. 104, 191603 (2014).
http://dx.doi.org/10.1063/1.4876962
21.
21.Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, J. Phys. D: Appl. Phys. 47, 315103 (5pp) (2014).
http://dx.doi.org/10.1088/0022-3727/47/31/315103
22.
22.J. J. Wu, D. J. Hou, T. J. Yang, I. J. Hsieh, Y. H. Kao, and H. E. Lin, Electron. Lett. 48(5), (2012).
23.
23.J. J. Wu, H. E. Lin, T. J. Yang, Y. H. Kao, H. L. Chiueh, and D. J. Hou, J. Electromagn. Analys. and Appl. 5, 58-62 (2013).
24.
24.G. Goubau, IEEE Trans.Microw. Theory Techn. 4, 197-200 (1956).
http://dx.doi.org/10.1109/TMTT.1956.1125062
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/2/10.1063/1.4907879
Loading
/content/aip/journal/adva/5/2/10.1063/1.4907879
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/2/10.1063/1.4907879
2015-02-05
2016-09-26

Abstract

In this work, we propose an optimized transition structure to realize smooth and high efficiency conversion from the guided wave supported by a conventional rectangular waveguide (CRW) to the domino plasmon polaritons (DPPs) supported by a domino plasmonic waveguide (DPW) and vice versa in the X-band (8.2GHz∼12.4GHz). This transition structure consists of two tapered CRWs connected by a gradient domino array with optimized gradient heights and lateral widths. Experimental results of the -parameters show excellent agreement with the simulations and the optimization scheme can be readily extended to other bands. Furthermore, a domino plasmonic power divider is implemented to demonstrate the application of the transition structure in the integration of conventional microwave circuits with plasmonic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/2/1.4907879.html;jsessionid=sgs8FMZsVCy7SnamPeKTu5Hg.x-aip-live-02?itemId=/content/aip/journal/adva/5/2/10.1063/1.4907879&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/2/10.1063/1.4907879&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/2/10.1063/1.4907879'
Right1,Right2,Right3,