Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/2/10.1063/1.4908003
1.
1.B. C. Viana, O. P. Ferreira, A. G. S. Filho, C. M. Rodrigues, S. G. Moraes, J. M. Filho, and O. L. Alves, J. Phys. Chem. C 113, 20234 (2009).
http://dx.doi.org/10.1021/jp9068043
2.
2.A. Medalia and B. Byrne, Anal. Chem. 23, 453 (1951).
http://dx.doi.org/10.1021/ac60051a017
3.
3.Z. Y. Hu, S. Haneklaus, G. Sparovek, and E. Schnug, Commun. Soil Sci. Plan. 37, 1381 (2006).
http://dx.doi.org/10.1080/00103620600628680
4.
4.F. Zhang, Siu-Wai Chan, J. E. Spanier, E. Apak, Q. Jin, R. D. Robinson, and I. P. Herman, Appl. Phys. Lett. 80, 127 (2002).
http://dx.doi.org/10.1063/1.1430502
5.
5.C. Hu, Z. Zhang, H. Liu, P. Gao, and Z. L. Wang, Nanotechnology 17, 5983 (2006).
http://dx.doi.org/10.1088/0957-4484/17/24/013
6.
6.H. Gu and M. D. Soucek, Chem. Mater. 19, 1103 (2007).
http://dx.doi.org/10.1021/cm061332r
7.
7.T. Pirmohamed, J. M. Dowding, S. Singh, B. Wasserman, E. Heckert, A. S. Karakoti, J. E. S. King, S. Seal, and W. T. Self, Chem. Commun. 46, 2736 (2010).
http://dx.doi.org/10.1039/b922024k
8.
8.V. K. Ivanov, A. B. Shcherbakov, and A. V. Usatenko, Russ. Chem. Rev. 78, 855 (2009).
http://dx.doi.org/10.1070/RC2009v078n09ABEH004058
9.
9.A. H. Morshed, M. E. Moussa, S. M. Bedair, R. Leonard, S. X. Liu, and N. El-Masry, Appl. Phys. Lett. 70, 1647 (1997).
http://dx.doi.org/10.1063/1.118658
10.
10.C. Korsvik, S. Patil, S. Seal, and W. T. Self, Chem. Commun. 14, 1056 (2007).
http://dx.doi.org/10.1039/b615134e
11.
11.S. M. Hirst, A. S. Karakoti, R. D. Tyler, N. Sriranganathan, S. Seal, and C. M. Reilly, Small 5, 2848 (2009).
http://dx.doi.org/10.1002/smll.200901048
12.
12.M. Lira-Cantu and F. C. Krebs, Sol. Energy Mater. Sol. Cells 90, 2076 (2006).
http://dx.doi.org/10.1016/j.solmat.2006.02.007
13.
13.J. Kašpar, P. Fornasiero, and M. Graziani, Cat.Today 50, 285 (1999).
http://dx.doi.org/10.1016/S0920-5861(98)00510-0
14.
14.N. Kakuta, N. Morishima, M. Kotobuki, T. Iwase, T. Mizushima, Y. Sato, and S. Matsuura, Appl. Surf. Sci. 121/122, 408 (1997).
http://dx.doi.org/10.1016/S0169-4332(97)00346-2
15.
15.P. Kaminski, T. Suzuki, and H. U. Anderson, Sensors Actuat B-Chem. 95, 73 (2003).
http://dx.doi.org/10.1016/S0925-4005(03)00407-6
16.
16.Magnetic Nanostructures, 2nd ed., edited by H. S. Nalwa (American Scientific Publishers, Los Angeles, 2009).
17.
17.A. Sundaresan, P. Bhargav, N. Rangarajan, U. Siddesh, and C. Rao, Phys. Rev. B 74, 161301 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.161306
18.
18.M. Venkatesan, C. B. Fitzgerald, and J.M.D. Coey, Nature 430, 630 (2004).
http://dx.doi.org/10.1038/430630a
19.
19.H. S. Saini, M. Singh, A. H. Reshak, and M. K. Kashyap, Comput. Mater. Sci. 74, 114 (2013).
http://dx.doi.org/10.1016/j.commatsci.2013.02.029
20.
20.S. Aškrabić, Z. Dohčević-Mitrović, A. Kremenović, N. Lazarević, V. Kahlenberg, and Z. V. Popović, J. Raman Spectrosc. 43, 76 (2012).
http://dx.doi.org/10.1002/jrs.2987
21.
21.J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nat. Mater. 4, 173 (2005).
http://dx.doi.org/10.1038/nmat1310
22.
22.J. M. D. Coey, M. Venkatesan, P. Stamenov, C. B. Fitzgerald, and L. S. Dorneles, Phys. Rev. B 72, 024450 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.024450
23.
23.Y. Liu, Z. Lockman, A. Aziz, and D. J. Macmanus, J. Phys. Condens. Matter 20, 165201 (2008).
http://dx.doi.org/10.1088/0953-8984/20/16/165201
24.
24.S. Y. Chen, Y. H. Lu, T. W. Huang, D. C. Yan, and C. L. Dong, J. Phys. Chem. C 114, 19576 (2010).
http://dx.doi.org/10.1021/jp1045172
25.
25.M. Y. Ge, H. Wang, E. Z. Liu, J. F. Liu, J. Z. Jiang, Y. K. Li, Z. A. Xu, and H. Y. Li, Appl. Phys. Lett. 93, 062505 (2008).
http://dx.doi.org/10.1063/1.2972118
26.
26.P. O. Maksimchuk, A. A. Masalov, and Yu. V. Malyukin, J. Nano-Electron. Phys. 5, 01004-1 (2013).
27.
27.S. Deshpande, S. Patil, S. V. N. T. Kuchibhatla, and S. Seal, Appl. Phys. Lett. 87, 133113-1 (2005).
http://dx.doi.org/10.1063/1.2061873
28.
28.S. Phokha, S. Pinitsoontorn, P. Chirawatkul, Y. Poo-arporn, and S. Maensiri, Nanoscale Res. Lett. 7, 425 (2012).
http://dx.doi.org/10.1186/1556-276X-7-425
29.
29.Q. Y. Wen, H. W. Zhang, Y. Q. Song, Q. H. Yang, H. Zhu, and J. Q. Xiao, J. Phys.: Condens. Matter 19, 246205 (2007).
http://dx.doi.org/10.1088/0953-8984/19/24/246205
30.
30.S. Tsunekawa, J. T. Wang, Y. Kawazoe, and A. Kasuya, J Appl. Phys. 94, 3654 (2003).
http://dx.doi.org/10.1063/1.1600520
31.
31.A. K. Chawla, S. Singhal, S. Nagar, H. O. Gupta, and R. Chandra, J. Appl. Phys. 108, 123519-1 (2010).
http://dx.doi.org/10.1063/1.3524516
32.
32.S. Maensiri, C. Marsingboon, P. Loakul, W. Jareonboon, V. Promarak, P. L. Anderson, and S. Seraphin, Cryst. Growth Des. 7, 950 (2007).
http://dx.doi.org/10.1021/cg0608864
33.
33.H. I. Chen and H. Y. Chang, Ceramic Int. 31, 795 (2005).
http://dx.doi.org/10.1016/j.ceramint.2004.09.006
34.
34.T. Masui, K. Fujiwara, K. Machida, G. Adachi, T. Sakata, and H. Mori, Chem. Mater. 9, 2197 (1997).
http://dx.doi.org/10.1021/cm970359v
35.
35.P. Patsalas, S. Logothetidis, L. Sygellou, and S. Kennou, Phys. Rev. B 68, 113308 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.035104
36.
36.J. E. Spanier, R. D. Robinson, F. Zhang, Siu-Wai Chan, and I. P. Herman, Physical Review B 63, 245407 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.245407
37.
37.J.R. McBride, K.C. Hass, B.D. Poindexter, and W.H. Weber, J. Appl. Phys. 76, 2435 (1994).
http://dx.doi.org/10.1063/1.357593
38.
38.S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphinc, and S. Maensiri, Mater. Chem. Phys. 115, 423 (2009).
http://dx.doi.org/10.1016/j.matchemphys.2008.12.031
39.
39.I. Kosacki, T. Suzuki, V. Petrovsky, H. U. Anderson, and P. Colomban, Solid State Ionics 149, 99 (2002).
40.
40.I. Kosacki, V. Petrovsky, H. U. Anderson, and P. Colomban, J. Am. Ceram. Soc. 85, 2646 (2002).
http://dx.doi.org/10.1111/j.1151-2916.2002.tb00509.x
41.
41.E. K. Goharshadi, S. Samiee, and P. Nancarrow, J. Colloid Interface Sci. 356, 473 (2011).
http://dx.doi.org/10.1016/j.jcis.2011.01.063
42.
42.S. H. Lee, Z. Y. Lu, S. V. Babu, and E. Matijevic, J. Materials Res. 7, 2744 (2002).
http://dx.doi.org/10.1557/JMR.2002.0396
43.
43.C. Laberty-Robert, J. W. Long, E. M. Lucas, K. A. Pettigrew, R. M. Stroud, M. S. Doescher, and D. R. Rolison, Chem. Mater. 18, 50 (2006).
http://dx.doi.org/10.1021/cm051385t
44.
44.H. Richter, Z. P. Wang, and L. Ley, Solid state Commum. 39, 625 (1981).
http://dx.doi.org/10.1016/0038-1098(81)90337-9
45.
45.W. H. Weber, K. C. Hass, and J. R. McBride, Phys. Rev. B 48, 178 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.178
46.
46.P. Nandakumar, C. Vijayan, M. Rajalakshmi, A. K. Arora, and Y. V. G. S. Murti, Physica E 11, 377 (2001).
http://dx.doi.org/10.1016/S1386-9477(01)00157-6
47.
47.D. S. Chuu and C. M. Dai, Phys. Rev. B 45, 11805 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.11805
48.
48.Q. Jiang, H. X. Shi, and M. Zhao, J. Chem. Phys. 111, 2176 (1999).
http://dx.doi.org/10.1063/1.479489
49.
49.C. C. Yang and S. Li, Phys. Rev. B 75, 165413 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.165413
50.
50.M. Srivastava, A. K. Ojha, S. Chaubey, P. K. Sharma, and A. C. Pandey, Mater. Sci. Eng., B 175, 14 (2010).
http://dx.doi.org/10.1016/j.mseb.2010.06.005
51.
51.M. Srivastava, J. Singh, M. Yashpal, and A. K. Ojha, J. Nanosci. Nanotechnol. 12, 6248 (2012).
http://dx.doi.org/10.1166/jnn.2012.6454
52.
52.M. Srivastava, A. K. Ojha, S. Chaubey, J. Singh, P. K. Sharma, and A. C. Pandey, J. Alloys Compd. 500, 206 (2010).
http://dx.doi.org/10.1016/j.jallcom.2010.03.245
53.
53.P. Schio, F. Vidal, Y. Zheng, J. Milano, E. Fonda, D. Demaille, B. Vodungbo, J. Varalda, and A. J. A. Oliveira, Phys. Rev. B 82, 094436 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.094436
54.
54.S. Y. Chen, C. H. Tsai, M. Z. Huang, D. C. Yan, T. W. Huang, and A. Gloter, J. Phys. Chem. C 116, 8707 (2011).
http://dx.doi.org/10.1021/jp2065634
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/2/10.1063/1.4908003
Loading
/content/aip/journal/adva/5/2/10.1063/1.4908003
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/2/10.1063/1.4908003
2015-02-09
2016-12-08

Abstract

In the present study, monodispersed CeO nanoparticles (NPs) of size 8.5 ± 1.0, 11.4 ± 1.0 and 15.4 ± 1.0 nm were synthesized using the sol-gel method. Size-dependent structural, optical and magnetic properties of as-prepared samples were investigated by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), high resolution transmission electron microscopy (HR-TEM), ultra-violet visible (UV-VIS) spectroscopy, Raman spectroscopy and vibrating sample magnetometer (VSM) measurements. The value of optical band gap is calculated for each particle size. The decrease in the value of optical band gap with increase of particle size may be attributed to the quantum confinement, which causes to produce localized states created by the oxygen vacancies due to the conversion of Ce4+ into Ce3+ at higher calcination temperature. The Raman spectra showed a peak at ∼461 cm-1 for the particle size 8.5 nm, which is attributed to the 1LO phonon mode. The shift in the Raman peak could be due to lattice strain developed due to variation in particle size. Weak ferromagnetism at room temperature is observed for each particle size. The values of saturation magnetization (Ms), coercivity (Hc) and retentivity (Mr) are increased with increase of particle size. The increase of Ms and Mr for larger particle size may be explained by increase of density of oxygen vacancies at higher calcination temperature. The latter causes high concentrations of Ce3+ ions activate more coupling between the individual magnetic moments of the Ce ions, leading to an increase of Ms value with the particle size. Moreover, the oxygen vacancies may also produce magnetic moment by polarizing spins of f electrons of cerium (Ce) ions located around oxygen vacancies, which causes ferromagnetism in pure CeO samples.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/2/1.4908003.html;jsessionid=tpRPwUNfnHAAsc1MTQAG3Ky3.x-aip-live-03?itemId=/content/aip/journal/adva/5/2/10.1063/1.4908003&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/2/10.1063/1.4908003&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/2/10.1063/1.4908003'
Right1,Right2,Right3,