Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.B. C. Viana, O. P. Ferreira, A. G. S. Filho, C. M. Rodrigues, S. G. Moraes, J. M. Filho, and O. L. Alves, J. Phys. Chem. C 113, 20234 (2009).
2.A. Medalia and B. Byrne, Anal. Chem. 23, 453 (1951).
3.Z. Y. Hu, S. Haneklaus, G. Sparovek, and E. Schnug, Commun. Soil Sci. Plan. 37, 1381 (2006).
4.F. Zhang, Siu-Wai Chan, J. E. Spanier, E. Apak, Q. Jin, R. D. Robinson, and I. P. Herman, Appl. Phys. Lett. 80, 127 (2002).
5.C. Hu, Z. Zhang, H. Liu, P. Gao, and Z. L. Wang, Nanotechnology 17, 5983 (2006).
6.H. Gu and M. D. Soucek, Chem. Mater. 19, 1103 (2007).
7.T. Pirmohamed, J. M. Dowding, S. Singh, B. Wasserman, E. Heckert, A. S. Karakoti, J. E. S. King, S. Seal, and W. T. Self, Chem. Commun. 46, 2736 (2010).
8.V. K. Ivanov, A. B. Shcherbakov, and A. V. Usatenko, Russ. Chem. Rev. 78, 855 (2009).
9.A. H. Morshed, M. E. Moussa, S. M. Bedair, R. Leonard, S. X. Liu, and N. El-Masry, Appl. Phys. Lett. 70, 1647 (1997).
10.C. Korsvik, S. Patil, S. Seal, and W. T. Self, Chem. Commun. 14, 1056 (2007).
11.S. M. Hirst, A. S. Karakoti, R. D. Tyler, N. Sriranganathan, S. Seal, and C. M. Reilly, Small 5, 2848 (2009).
12.M. Lira-Cantu and F. C. Krebs, Sol. Energy Mater. Sol. Cells 90, 2076 (2006).
13.J. Kašpar, P. Fornasiero, and M. Graziani, Cat.Today 50, 285 (1999).
14.N. Kakuta, N. Morishima, M. Kotobuki, T. Iwase, T. Mizushima, Y. Sato, and S. Matsuura, Appl. Surf. Sci. 121/122, 408 (1997).
15.P. Kaminski, T. Suzuki, and H. U. Anderson, Sensors Actuat B-Chem. 95, 73 (2003).
16.Magnetic Nanostructures, 2nd ed., edited by H. S. Nalwa (American Scientific Publishers, Los Angeles, 2009).
17.A. Sundaresan, P. Bhargav, N. Rangarajan, U. Siddesh, and C. Rao, Phys. Rev. B 74, 161301 (2006).
18.M. Venkatesan, C. B. Fitzgerald, and J.M.D. Coey, Nature 430, 630 (2004).
19.H. S. Saini, M. Singh, A. H. Reshak, and M. K. Kashyap, Comput. Mater. Sci. 74, 114 (2013).
20.S. Aškrabić, Z. Dohčević-Mitrović, A. Kremenović, N. Lazarević, V. Kahlenberg, and Z. V. Popović, J. Raman Spectrosc. 43, 76 (2012).
21.J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nat. Mater. 4, 173 (2005).
22.J. M. D. Coey, M. Venkatesan, P. Stamenov, C. B. Fitzgerald, and L. S. Dorneles, Phys. Rev. B 72, 024450 (2005).
23.Y. Liu, Z. Lockman, A. Aziz, and D. J. Macmanus, J. Phys. Condens. Matter 20, 165201 (2008).
24.S. Y. Chen, Y. H. Lu, T. W. Huang, D. C. Yan, and C. L. Dong, J. Phys. Chem. C 114, 19576 (2010).
25.M. Y. Ge, H. Wang, E. Z. Liu, J. F. Liu, J. Z. Jiang, Y. K. Li, Z. A. Xu, and H. Y. Li, Appl. Phys. Lett. 93, 062505 (2008).
26.P. O. Maksimchuk, A. A. Masalov, and Yu. V. Malyukin, J. Nano-Electron. Phys. 5, 01004-1 (2013).
27.S. Deshpande, S. Patil, S. V. N. T. Kuchibhatla, and S. Seal, Appl. Phys. Lett. 87, 133113-1 (2005).
28.S. Phokha, S. Pinitsoontorn, P. Chirawatkul, Y. Poo-arporn, and S. Maensiri, Nanoscale Res. Lett. 7, 425 (2012).
29.Q. Y. Wen, H. W. Zhang, Y. Q. Song, Q. H. Yang, H. Zhu, and J. Q. Xiao, J. Phys.: Condens. Matter 19, 246205 (2007).
30.S. Tsunekawa, J. T. Wang, Y. Kawazoe, and A. Kasuya, J Appl. Phys. 94, 3654 (2003).
31.A. K. Chawla, S. Singhal, S. Nagar, H. O. Gupta, and R. Chandra, J. Appl. Phys. 108, 123519-1 (2010).
32.S. Maensiri, C. Marsingboon, P. Loakul, W. Jareonboon, V. Promarak, P. L. Anderson, and S. Seraphin, Cryst. Growth Des. 7, 950 (2007).
33.H. I. Chen and H. Y. Chang, Ceramic Int. 31, 795 (2005).
34.T. Masui, K. Fujiwara, K. Machida, G. Adachi, T. Sakata, and H. Mori, Chem. Mater. 9, 2197 (1997).
35.P. Patsalas, S. Logothetidis, L. Sygellou, and S. Kennou, Phys. Rev. B 68, 113308 (2003).
36.J. E. Spanier, R. D. Robinson, F. Zhang, Siu-Wai Chan, and I. P. Herman, Physical Review B 63, 245407 (2001).
37.J.R. McBride, K.C. Hass, B.D. Poindexter, and W.H. Weber, J. Appl. Phys. 76, 2435 (1994).
38.S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphinc, and S. Maensiri, Mater. Chem. Phys. 115, 423 (2009).
39.I. Kosacki, T. Suzuki, V. Petrovsky, H. U. Anderson, and P. Colomban, Solid State Ionics 149, 99 (2002).
40.I. Kosacki, V. Petrovsky, H. U. Anderson, and P. Colomban, J. Am. Ceram. Soc. 85, 2646 (2002).
41.E. K. Goharshadi, S. Samiee, and P. Nancarrow, J. Colloid Interface Sci. 356, 473 (2011).
42.S. H. Lee, Z. Y. Lu, S. V. Babu, and E. Matijevic, J. Materials Res. 7, 2744 (2002).
43.C. Laberty-Robert, J. W. Long, E. M. Lucas, K. A. Pettigrew, R. M. Stroud, M. S. Doescher, and D. R. Rolison, Chem. Mater. 18, 50 (2006).
44.H. Richter, Z. P. Wang, and L. Ley, Solid state Commum. 39, 625 (1981).
45.W. H. Weber, K. C. Hass, and J. R. McBride, Phys. Rev. B 48, 178 (1993).
46.P. Nandakumar, C. Vijayan, M. Rajalakshmi, A. K. Arora, and Y. V. G. S. Murti, Physica E 11, 377 (2001).
47.D. S. Chuu and C. M. Dai, Phys. Rev. B 45, 11805 (1992).
48.Q. Jiang, H. X. Shi, and M. Zhao, J. Chem. Phys. 111, 2176 (1999).
49.C. C. Yang and S. Li, Phys. Rev. B 75, 165413 (2007).
50.M. Srivastava, A. K. Ojha, S. Chaubey, P. K. Sharma, and A. C. Pandey, Mater. Sci. Eng., B 175, 14 (2010).
51.M. Srivastava, J. Singh, M. Yashpal, and A. K. Ojha, J. Nanosci. Nanotechnol. 12, 6248 (2012).
52.M. Srivastava, A. K. Ojha, S. Chaubey, J. Singh, P. K. Sharma, and A. C. Pandey, J. Alloys Compd. 500, 206 (2010).
53.P. Schio, F. Vidal, Y. Zheng, J. Milano, E. Fonda, D. Demaille, B. Vodungbo, J. Varalda, and A. J. A. Oliveira, Phys. Rev. B 82, 094436 (2010).
54.S. Y. Chen, C. H. Tsai, M. Z. Huang, D. C. Yan, T. W. Huang, and A. Gloter, J. Phys. Chem. C 116, 8707 (2011).

Data & Media loading...


Article metrics loading...



In the present study, monodispersed CeO nanoparticles (NPs) of size 8.5 ± 1.0, 11.4 ± 1.0 and 15.4 ± 1.0 nm were synthesized using the sol-gel method. Size-dependent structural, optical and magnetic properties of as-prepared samples were investigated by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), high resolution transmission electron microscopy (HR-TEM), ultra-violet visible (UV-VIS) spectroscopy, Raman spectroscopy and vibrating sample magnetometer (VSM) measurements. The value of optical band gap is calculated for each particle size. The decrease in the value of optical band gap with increase of particle size may be attributed to the quantum confinement, which causes to produce localized states created by the oxygen vacancies due to the conversion of Ce4+ into Ce3+ at higher calcination temperature. The Raman spectra showed a peak at ∼461 cm-1 for the particle size 8.5 nm, which is attributed to the 1LO phonon mode. The shift in the Raman peak could be due to lattice strain developed due to variation in particle size. Weak ferromagnetism at room temperature is observed for each particle size. The values of saturation magnetization (Ms), coercivity (Hc) and retentivity (Mr) are increased with increase of particle size. The increase of Ms and Mr for larger particle size may be explained by increase of density of oxygen vacancies at higher calcination temperature. The latter causes high concentrations of Ce3+ ions activate more coupling between the individual magnetic moments of the Ce ions, leading to an increase of Ms value with the particle size. Moreover, the oxygen vacancies may also produce magnetic moment by polarizing spins of f electrons of cerium (Ce) ions located around oxygen vacancies, which causes ferromagnetism in pure CeO samples.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd