Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/2/10.1063/1.4908036
1.
1.Y. Yang and F. Wudl, Adv. Mater. 21, 1401 (2009).
http://dx.doi.org/10.1002/adma.200900844
2.
2.C. Deibel, V. Dyakonov, and C. J. Brabec, IEEE J. Sel. Top. Quantum Electron. 16, 1517 (2010).
http://dx.doi.org/10.1109/JSTQE.2010.2048892
3.
3.C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Funct. Mater. 11, 15 (2001).
http://dx.doi.org/10.1002/1616-3028(200102)11:1%3C15::AID-ADFM15%3E3.0.CO;2-A
4.
4.L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom, Phys. Rev. B 72, 085205 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.085205
5.
5.R. Hausermann, E. Knapp, M. Moos, N. A. Reinke, T. Flatz, and B. Ruhstaller, J. Appl. Phys. 106, 104507 (2009).
http://dx.doi.org/10.1063/1.3259367
6.
6.E. Knapp, R. Hausermann, H. U. Schwarzenbach, and B. Ruhstaller, J. Appl. Phys. 108, 054504 (2010).
http://dx.doi.org/10.1063/1.3475505
7.
7.S. Altazin, R. Clerc, R. Gwoziecki, G. Pananakakis, G. Ghibaudo, and C. Serbutoviez, Appl. Phys. Lett. 99, 143301 (2011).
http://dx.doi.org/10.1063/1.3643126
8.
8.Salman M. Arnab and M. Z. Kabir, J. Appl. Phys. 115, 034504 (2014).
http://dx.doi.org/10.1063/1.4861725
9.
9.P. Kumar, S. C. Jain, V. Kumar, S. Chand, and R. P. Tandon, J. Appl. Phys. 105, 104507 (2009).
http://dx.doi.org/10.1063/1.3129320
10.
10.M. M. Chowdhury and M. K. Alam, Curr. Appl Phys. 14, 340 (2014).
http://dx.doi.org/10.1016/j.cap.2013.12.012
11.
11.A. J. Heeger, Adv. Mater. 26, 10 (2014).
http://dx.doi.org/10.1002/adma.201304373
12.
12.P. Langevin, Ann. Chim. Phys. 28, 433 (1903).
13.
13.S. R. Cowan, A. Roy, and A. J. Heeger, Phys. Rev. B 82, 245207 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.245207
14.
14.J. Kniepert, I. Lange, N. J. van der Kaap, L. J. A. Koster, and Dieter Neher, Adv. Energy Mater. 4, 1301401 (2014).
http://dx.doi.org/10.1002/aenm.201301401
15.
15.M. L. Inche Ibrahim, Zubair Ahmad, Khaulah Sulaiman, and S. V. Muniandy, AIP Adv. 4, 057133 (2014).
http://dx.doi.org/10.1063/1.4881080
16.
16.S. M. Sze and Kwok K. Ng, Physics of Semiconductor Devices, 3rd ed. (John Wiley & Sons, New Jersey, 2007), p. 63.
17.
17.W. F. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. A. Bobbert, P. W. M. Blom, D. M. de Leeuw, and M. A. J. Michels, Phys. Rev. Lett. 94, 206601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.206601
18.
18.A. Pivrikas, G. Juska, A. J. Mozer, M. Scharber, K. Arlauskas, N. S. Sariciftci, H. Stubb, and R. Osterbacka, Phys. Rev. Lett. 94, 176806 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.176806
19.
19.L. Onsager, Phys. Rev. 54, 554 (1938).
http://dx.doi.org/10.1103/PhysRev.54.554
20.
20.C. L. Braun, J. Chem. Phys. 80, 4157 (1984).
http://dx.doi.org/10.1063/1.447243
21.
21.V. D. Mihailetchi, L. J. A. Koster, J. C. Hummelen, and P. W. M. Blom, Phys. Rev. Lett. 93, 216601 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.216601
22.
22.Feng Gao and Olle Inganas, Phys. Chem. Chem. Phys. 16, 20291 (2014).
http://dx.doi.org/10.1039/C4CP01814A
23.
23.D. L. Scharfetter and H. K. Gummel, IEEE Trans. Electron Devices 16, 64 (1969).
http://dx.doi.org/10.1109/T-ED.1969.16566
24.
24.H. K. Gummel, IEEE Trans. Electron Devices 11, 455 (1964).
http://dx.doi.org/10.1109/T-ED.1964.15364
25.
25.J. D. Kotlarski, P. W. M. Blom, L. J. A. Koster, M. Lenes, and L. H. Slooff, J. Appl. Phys. 103, 084502 (2008).
http://dx.doi.org/10.1063/1.2905243
26.
26. Semiconducting thin film optics simulator (SETFOS) by Fluxim AG, Switzerland (www.fluxim.com).
27.
27.A. Hadipour, B. de Boer, and P. W. M. Blom, Org. Electron. 9, 617 (2008).
http://dx.doi.org/10.1016/j.orgel.2008.03.009
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/2/10.1063/1.4908036
Loading
/content/aip/journal/adva/5/2/10.1063/1.4908036
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/2/10.1063/1.4908036
2015-02-09
2016-09-28

Abstract

An expression to describe the current-voltage characteristics of organic bulk heterojunction (BHJ) solar cells is derived. The derivation is obtained by analytically solving the drift-diffusion model for organic BHJ solar cells with the assumption of uniform bimolecular recombination rate. The assumption of uniform bimolecular recombination rate leads to somewhat inaccurate, for example, carrier densities as functions of the position inside the device. However, we show that this assumption should still produce an expression for the current as a function of applied voltage as if the actual bimolecular recombination rate is considered in the derivation. Applying this analytical expression to experimental current-voltage data enable us to directly extract and analyze, for example, the recombination loss of an organic BHJ solar cell as a function of applied voltage.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/2/1.4908036.html;jsessionid=baOsOWkwcslHpTq1nIbnpxL_.x-aip-live-03?itemId=/content/aip/journal/adva/5/2/10.1063/1.4908036&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/2/10.1063/1.4908036&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/2/10.1063/1.4908036'
Right1,Right2,Right3,