Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.B. O’Regan and M. Gratzel, Nature 353(6346), 737 (1991).
2.N. Fuke, A. Fukui, A. Islam, R. Komiya, R. Yamanaka, H. Harima, and L. Han, Solar Energy Materials and Solar Cells 93, 720 (2009).
3.J. Li, L. Wang, X. Kong, B. Ma, Y. Shi, C. Zhan, and Y. Qiu, Langmuir : the ACS journal of surfaces and colloids 25, 11162 (2009).
4.L. Zhao, J. Yu, J. Fan, P. Zhai, and S. Wang, Electrochemistry Communications 11, 2052 (2009).
5.D. Zhang, M. Wang, A. G. Brolo, J. Shen, X. Li, and S. Huang, Journal of Physics D: Applied Physics 46, 024005 (2013).
6.F. Sauvage, D. Chen, P. Comte, F. Huang, L.-P. Heiniger, Y.-B. Cheng, R. A. Caruso, and M. Graetzel, ACS Nano 4, 4420 (2010).
7.W. Shao, F. Gu, C. Li, and M. Lu, Industrial & Engineering Chemistry Research 49, 9111 (2010).
8.K.-M. Lee, V. Suryanarayanan, and K.-C. Ho, Solar Energy Materials and Solar Cells 90, 2398 (2006).
9.K. H. Park and C. K. Hong, Electrochemistry Communications 10, 1187 (2008).
10.S. Xu, C.-h. Zhou, Y. Yang, H. Hu, B. Sebo, B.-l. Chen, Q.-d. Tai, and X. Zhao, Energy & Fuels 25, 1168 (2011).
11.H. Li, Z. Xie, Y. Zhang, and J. Wang, Thin Solid Films 518, e68 (2010).
12.Z.-S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, Coordination Chemistry Reviews 248, 1381 (2004).
13.A. Omar, H. Abdullah, M. A. Yarmo, S. Shaari, and M. R. Taha, Journal of Physics D: Applied Physics 46, 165503 (2013).
14.A. I. Maldonado-Valdivia, E. G. Galindo, M. J. Ariza, and M. J. García-Salinas, Solar Energy 91, 263 (2013).
15.T. Toyao, M. Minakata, K. Iyatani, A. Ebrahimi, P.-C. Chen, C.-B. Tsai, Y. Horiuchi, M. Matsuoka, and M. Anpo, Research on Chemical Intermediates 39, 415 (2012).
16.J. Wan, Y. Lei, Y. Zhang, Y. Leng, and J. Liu, Electrochimica Acta 59, 75 (2012).
17.S. Iijima and T. Ichihashi, Nature 363(6430), 603 (1993).
18.A. Kongkanand and P. V. Kamat, ACS Nano 1, 13 (2007).
19.S. M. Mahpeykar, M. K. Tabatabaei, H. Ghafoori-fard, H. Habibiyan, and J. Koohsorkhi, Nanotechnology 24, 435402 (2013).
20.L. Li, M. Yang, S. Zhang, P. Liu, G. Li, W. Wen, H. Zhang, and H. Zhao, Nanotechnology 21, 485503 (2010).
21.J. Yu, J. Fan, and B. Cheng, Journal of Power Sources 196, 7891 (2011).
22.K. T. Dembele, R. Nechache, L. Nikolova, A. Vomiero, C. Santato, S. Licoccia, and F. Rosei, Journal of Power Sources 233, 93 (2013).
23.Y. F. Chan, C. C. Wang, and C. Y. Chen, Journal of Materials Science 48, 5261 (2013).
24.A. de Morais, L. M. D. Loiola, J. E. Benedetti, A. S. Gonçalves, C. A. O. Avellaneda, J. H. Clerici, M. A. Cotta, and A. F. Nogueira, Journal of Photochemistry and Photobiology A: Chemistry 251, 78 (2013).
25.Y.-F. Chan, C.-C. Wang, B.-H. Chen, and C.-Y. Chen, Progress in Photovoltaics: Research and Applications 21, 4757 (2013).
26.S.-R. Jang, R. Vittal, and K.-J. Kim, Langmuir : the ACS journal of surfaces and colloids 20, 9807 (2004).
27.Y. Yu, J. C. Yu, J.-G. Yu, Y.-C. Kwok, Y.-K. Che, J.-C. Zhao, L. Ding, W.-K. Ge, and P.-K. Wong, Applied Catalysis A: General 289, 186 (2005).
28.T. Sawatsuk, A. Chindaduang, C. Sae-kung, S. Pratontep, and G. Tumcharern, Diamond and Related Materials 18, 524 (2009).
29.P. Du, L. Song, J. Xiong, N. Li, L. Wang, Z. Xi, N. Wang, L. Gao, and H. Zhu, Electrochimica Acta 87, 651 (2013).
30.Z. Chen, G. Cao, Q. Zhang, P. Lan, B. Zhu, T. Yu, and Z. Lin, Nanotechnology 18, 095604 (2007).
31.G. An, W. Ma, Z. Sun, Z. Liu, B. Han, S. Miao, Z. Miao, and K. Ding, Carbon 45, 1795 (2007).
32.B. Gao, G. Z. Chen, and G. Li Puma, Applied Catalysis B: Environmental 89, 503 (2009).
33.W. Zhou, F. Sun, K. Pan, G. Tian, B. Jiang, Z. Ren, C. Tian, and H. Fu, Advanced Functional Materials 21, 1922 (2011).
34.S. L. Kim, S.-R. Jang, R. Vittal, J. Lee, and K.-J. Kim, Journal of applied electrochemistry 36, 1433 (2006).
35.W. Jarernboon, S. Pimanpang, S. Maensiri, E. Swatsitang, and V. Amornkitbamrung, Journal of Alloys and Compounds 476, 840 (2009).
36.L. Chen, B.-L. Zhang, M.-Z. Qu, and Z.-L. Yu, Powder Technology 154, 70 (2005).

Data & Media loading...


Article metrics loading...



A new titanium dioxide (TiO) slurry formulation is herein reported for the fabrication of TiO photoanode for use in dye-sensitized solar cells (DSSCs). The prepared TiO photoanode featured a highly uniform mesoporous structure with well-dispersed TiO nanoparticles. The energy conversion efficiency of the resulting TiO slurry-based DSSC was ∼63% higher than that achieved by a DSSC prepared using a commercial TiO slurry. Subsequently, the incorporation of acid-treated multi-walled carbon nanotubes (CNTs) into the TiO slurry was examined. More specifically, the effect of varying the concentration of the CNTs in this slurry on the performance of the resulting DSSCs was studied. The chemical state of the CNTs-incorporated TiO photoanode was investigated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. A high energy conversion efficiency of 6.23% was obtained at an optimum CNT concentration of ∼0.06 wt.%. The obtained efficiency corresponds to a 63% enhancement when compared with that obtained from a DSSC based on a commercial TiO slurry. The higher efficiency was attributed to the improvement in the collection and transport of excited electrons in the presence of the CNTs.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd