Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature (London) 391, 667 (1998).
2.M. H. Lu, X. K. Liu, L. Feng, J. Li, C. P. Huang, Y. F. Chen, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, Phys. Rev. Lett. 99, 174301 (2007).
3.Y. Zhou, M.-H. Lu, L. Feng, X. Ni, Y.-F. Chen, Y.-Y. Zhu, S.-N. Zhu, and N.-B. Ming, Phys. Rev. Lett. 104, 164301 (2010).
4.X. Zhang, Phys. Rev. B 71, 241102(R (2005).
5.J. Christensen, A.-I. Fernandez-Dominguez, F. De Leon-Perez, L. Martin-Moreno, and F. J. Garcia-Vidal, Nature Phys. 3, 851 (2007).
6.J. Christensen, L. Martin-Moreno, and F. J. Garcia-Vidal, Phys. Rev. Lett. 101, 014301 (2008).
7.H. Estrada, P. Candelas, A. Uris, F.o Belmar, F. J. Garca de Abajo, and F. Meseguer, Phys. Rev. Lett. 101, 084302 (2008).
8.J. J. Park, K. J. B. Lee, O. B. Wright, M. K. Jung, and Sam H. Lee, Phys. Rev. Lett. 110, 244302 (2013).
9.J. J. Park, K. J. B. Lee, O. B. Wright, M. K. Jung, and Sam H. Lee, Phys. Rev. Lett. 111, 199901 (2013).
10.Y Li, B Liang, X Zou, and J Cheng, Appl. Phys. Lett. 103, 063509 (2013).
11.B. Hou, Jun Mei, Manzhu Ke, Weijia Wen, Zhengyou Liu, Jing Shi, and Ping Sheng, Phys. Rev. B 76, 054303 (2007).
12.V. Koju, E. Rowe, and W. M. Robertson, AIP Advances 4, 077132 (2014).
13.L. Kinsler, A. Frey, A. Coppens, and J. Sanders, Fundamentals of Acoustics, Third edition (John Wiley and Sons, New York, NY, 1982).
14.Z. G. Wang, S. H. Lee, C. K. Kim, C. M. Park, K. Nahm, and S. A. Nikitov, J. Appl. Phys. 103, 064907 (2008).
15.N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, Nature Mater. 5, 452 (2006).
16.J. Fey and W. M. Robertson, J. Appl. Phys. 109, 114903 (2011).
17.W. M. Robertson and J. M. Parker, J. Acoust. Soc. Am. 131, 2488 (2012).
18.E. H. El Boudouti, N. Fettouhi, A. Akjouj, B. Djafari-Rouhani, A. Mir, J. O. Vasseur, L. Dobrzynski, and J. Zemmouri, J. Appl. Phys. 95, 1102 (2004).
19.W. M. Robertson, J. Pappafotis, P. Flannigan, J. Cathey, B. Cathey, and C. Klaus, Appl. Phys. Lett. 90, 014102 (2007).
20.J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, Nature Materials 8, 931 (2009).

Data & Media loading...


Article metrics loading...



The phenomenon of extraordinary acoustic transmission through a solid barrier with an embedded Helmholtz resonator (HR) is demonstrated. The Helmholtz resonator consists of an embedded cavity and two necks that protrude, one on each side of the barrier. Extraordinary transmission occurs for a narrow spectral range encompassing the resonant frequency of the Helmholtz resonator. We show that an amplitude transmission of 97.5% is achieved through a resonator whose neck creates an open area of 6.25% of the total barrier area. In addition to the enhanced transmission, we show that there is a smooth, continuous phase transition in the transmitted sound as a function of frequency. The frequency dependent phase transition is used to experimentally realize slow wave propagation for a narrow-band Gaussian wave packet centered at the maximum transmission frequency. The use of parallel pairs of Helmholtz resonators tuned to different resonant frequencies is experimentally explored as a means of increasing the transmission bandwidth. These experiments show that because of the phase transition, there is always a frequency between the two Helmholtz resonant frequencies at which destructive interference occurs whether the resonances are close or far apart. Finally, we explain how the phase transition associated with Helmholtz-resonator-mediated extraordinary acoustic transmission can be exploited to produce diffractive acoustic components including sub-wavelength thickness acoustic lenses.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd