Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/2/10.1063/1.4909542
1.
1.K. Zhang, F. Zhu, C. H. A. Huan, and A.T.S. Wee, J.Appl.Phys 86, 2 (1999).
2.
2.X. Liu, D. Zhang, Y. Zhang, and X. Dai, J.Appl.Phys 107, 64309 (2010).
http://dx.doi.org/10.1063/1.3354092
3.
3.J. Huang, X. Xu, C. Gu, S. Yao, Y. Sun, and J. Liu, CrystEnggComm 14, 3233 (2012).
4.
4.T. garden, Nature 389 (1997).
5.
5.E. Fortunato, P. Barquinha, and R. Martins, Adv. Mater 24, 2945 (2012).
http://dx.doi.org/10.1002/adma.201103228
6.
6.H. Hosono, Y. Ogo, H. Yanagi, and T. Kamiya, Electrochemical and Solid-State Letters 14, H13 (2011).
http://dx.doi.org/10.1149/1.3505288
7.
7.Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Appl. Phys. Lett 93, 032113 (2008).
http://dx.doi.org/10.1063/1.2964197
8.
8.E. Fortunato and R. Martins, Phys. Status Solidi RRL 5, 336 (2011).
http://dx.doi.org/10.1002/pssr.201105246
9.
9.W. Guo, Fu.L. Zhang, Y. Zhang, L.Y. Liang, Z.M. Liu, H.T. Cao, and XQ Pan, Appl. Phys. Lett 96, 042113 (2010).
http://dx.doi.org/10.1063/1.3277153
10.
10.B.D. Granato, J.A. Caraveo-Frescas, H.N. Alshareef, and U. Schwingenschlogl, Appl. Phys. Lett 102, 212105 (2013).
http://dx.doi.org/10.1063/1.4808382
11.
11.J.M. Xu, L. Li, S. Wang, H.L. Ding, Y. X. Zhang, and G. H. Li, CrystEnggComm 15, 3296 (2013).
http://dx.doi.org/10.1039/c3ce40241j
12.
12.X. Liu, D. Zhang, Y. Zhang, and X. Dai, J.Appl.Phys 107, 064309 (2010).
http://dx.doi.org/10.1063/1.3354092
13.
13.X. Xu, M. Ge, K. Stahl, and J.Z. Jiang, Chemical Physics Letters 482, 287 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.10.012
14.
14.H. Yabuta, N. Kaji, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, Appl. Phys.Lett. 97, 072111 (2010).
http://dx.doi.org/10.1063/1.3478213
15.
15.C. Thanachayanont, V. Yordsri, and C. Boothroyd, Materials Letters 65, 2610 (2011).
http://dx.doi.org/10.1016/j.matlet.2011.05.071
16.
16.K. Okamura, B. Nasr, R. A. Brand, and H. Hahn, J. Mater. Chem 22, 4607 (2012).
http://dx.doi.org/10.1039/c2jm16426d
17.
17.M-G. Kim, M. G. Kanatzidis, A. Facchetti, and T. J. Marks, Nature Materials 10 (2011).
18.
18.K. Sakasui, Y. Oaki, H. Uchiyama, E. Hosono, H. Zhou, and H. Imai, Nanoscale 2, 2424 (2010).
http://dx.doi.org/10.1039/c0nr00370k
19.
19.P. Sangeetha, V. Sasirekha, and V. Ramakrishnan, J. Raman Spectroscopy 42, 1634 (2011).
http://dx.doi.org/10.1002/jrs.2919
20.
20.J.M. Xu, L. Li, S. Wang, H.L. Ding, Y.X. Zhang, and G.H. Li, CrystEnggComm 15, 3296 (2013).
http://dx.doi.org/10.1039/c3ce40241j
21.
21.E. Fortunato, R. Barros, P. Barquinha, V. Figueiredo, S.H. Ko Park, C-S. Hwang, and R. Martins, Appl.Phys.Lett 97, 052105 (2010).
http://dx.doi.org/10.1063/1.3469939
22.
22.V.D. Mote, Y. Purushotham, and BN. Dole, Journal of Theoretical and Applied Physics 6.6 (2012).
23.
23.X. Wang, F.X. Zhang, I. Loa, K. Syassen, M. Hanfland, and Y.L. Mathi, Phys.Stat.Sol (b) 3168 (2004).
http://dx.doi.org/10.1002/pssb.200405231
24.
24.J. Geurts, S. Rau, W. Richter, and F.J. Schmitte, Thin Solid Films 121, 217 (1984).
http://dx.doi.org/10.1016/0040-6090(84)90303-1
25.
25.Y.Q. Guo, R.Q. Tan, X. Li, J.H. Zhao, Z. L. Luo, C. Gao, and W.J. Song, CrystEngcomm 13, 5677 (2011).
http://dx.doi.org/10.1039/c0ce00949k
26.
26.A.S. Aji and Y. Darma, AIP Conference Proceedings 93, 55410 (2013).
27.
27.S.K. Pillai, L. M. Sikhwivhilu, and Thembela K. Hillie, Synthesis Chemistry and Physics 12, 010 (2012).
28.
28.J. Zawadzki, 147 (1989).
29.
29.SK. F. Ahmed, S. Khan, P.K. Ghosh, M.K. Mitra, and K. K. Chattopadhyay, J Sol-Gel Sci Technn 39, 241 (2006).
http://dx.doi.org/10.1007/s10971-006-7808-x
30.
30.J. P. Allen, D. O. Scanlon, S. C. Parker, and G. W. Watson, Phys.Chem.Chem.C 115, 19916 (2011).
http://dx.doi.org/10.1021/jp205148y
31.
31.W. Bing and X. Ping, Chinese Physics B 18, 1 (2010).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/2/10.1063/1.4909542
Loading
/content/aip/journal/adva/5/2/10.1063/1.4909542
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/2/10.1063/1.4909542
2015-02-13
2016-12-07

Abstract

A novel and simple chemical method based on sol-gel processing was proposed to deposit metastable orthorhombic tin oxide (SnOx) thin films on glass substrates at room temperature. The resultant samples are labeled according to the solvents used: ethanol (SnO-EtOH), isopropanol (SnO-IPA) and methanol (SnO-MeOH). The variations in the structural, morphological and optical properties of the thin films deposited using different solvents were characterized by X-ray diffraction, atomic force microscopy, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, UV-vis spectroscopy and photoluminescence (PL) analysis. The XRD patterns confirm that all the films, irrespective of the solvents used for preparation, were polycrystalline in nature and contained a mixed phases of tin (II) oxide and tin (IV) oxide in a metastable orthorhombic crystal structure. FTIR spectra confirmed the presence of Sn=O and Sn-O in all of the samples. PL spectra showed a violet emission band centered at 380 nm (3.25 eV) for all of the solvents. The UV-vis spectra indicated a maximum absorption band shown at 332 nm and the highest average transmittance around 97% was observed for the SnO-IPA and SnO-MeOH thin film samples. The AFM results show variations in the grain size with solvent. The structural and optical properties of the SnO thin films indicate that this method of fabricating tin oxide is promising and that future work is warranted to analyze the electrical properties of the films in order to determine the viability of these films for various transparent conducting oxide applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/2/1.4909542.html;jsessionid=pqhZUqwb8C3Q7Vn5ARcDxN2J.x-aip-live-06?itemId=/content/aip/journal/adva/5/2/10.1063/1.4909542&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/2/10.1063/1.4909542&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/2/10.1063/1.4909542'
Right1,Right2,Right3,