Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/2/10.1063/1.4913361
1.
1.B. A. Marinkovic, P. M. Jardim, R. R. de Avillez, and F. Rizzo, Sol. Stat. Sci. 7, 1377 (2005).
http://dx.doi.org/10.1016/j.solidstatesciences.2005.08.012
2.
2.T. A. Mary, J. S. O. Evans, T. Vogt, and A. W. Sleight, Science 272, 90 (1996).
http://dx.doi.org/10.1126/science.272.5258.90
3.
3.J. S. O. Evans, T. A. Mary, T. Vogt, M. A. Subramanian, and A. W. Sleight, Chem. Mater. 8, 2809 (1996).
http://dx.doi.org/10.1021/cm9602959
4.
4.C. Lind, A. P. Wilkinson, Z. B. Hu, S. Short, and J. D. Jorgensen, Chem. Mater. 10, 2335 (1998).
http://dx.doi.org/10.1021/cm980438m
5.
5.C. Lind, Materials 5, 1125 (2012).
http://dx.doi.org/10.3390/ma5061125
6.
6.V. Gava, A. L. Martinotto, and C. A. Perottoni, Phys. Rev. Lett. 109, 195503 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.195503
7.
7.F. Bridge, T. Keiber, P. Juhas, S. J. L. Billinge, L. Sutton, J. Wilde, and Glen R. Kowach, Phys. Rev. Lett. 112, 045505 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.045505
8.
8.P. M. Forster and A. W. Sleight, Int. J. Inorg. Mater. 1, 123 (1999).
http://dx.doi.org/10.1016/S1466-6049(99)00021-5
9.
9.P. M. Forster, A. Yokochi, and A. W. Sleight, J. Sol. Stat. Chem. 140, 157 (1998).
http://dx.doi.org/10.1006/jssc.1998.7967
10.
10.Bojan A. Marinkovic, Monica Ari, Roberto R. de Avillez, Fernando Rizzo, Fabio F. Ferreira, Kimberly J. Miller, Michel B. Johnson, and Mary Anne White, Chem. Mater. 21, 2886 (2009).
http://dx.doi.org/10.1021/cm900650c
11.
11.Lei Wang, Fei Wang, Peng-Fei Yuan, Qiang Sun, Er-Jun Liang, Yu Jia, and Zheng-Xiao Guo, Mater. Res. Bull. 48, 2724 (2013).
http://dx.doi.org/10.1016/j.materresbull.2013.04.001
12.
12.S. Sumithra and A. M. Umarji, Sol. Stat. Sci. 8, 1453 (2006).
http://dx.doi.org/10.1016/j.solidstatesciences.2006.03.010
13.
13.N. Duan, U. Kameswari, and A. W. Sleight, J. Am. Chem. Soc. 121, 10432 (1999).
http://dx.doi.org/10.1021/ja992569+
14.
14.M. M. Wu, Y. Z. Cheng, J. Peng, X. L. Xiao, D. F. Chen, R. Kiyanagi, J. S. Fieramosca, S. Short, J. Jorgensen, and Z. B. Hu, Mater. Res. Bull. 42, 2090 (2007).
http://dx.doi.org/10.1016/j.materresbull.2007.01.015
15.
15.M. M. Wu, J. Peng, Y. Z. Cheng, X. L. Xiao, Y. M. Hao, and Z. B. Hu, Mater. Sci. Eng. B 137, 144 (2007).
http://dx.doi.org/10.1016/j.mseb.2006.11.004
16.
16.M. M. Wu, J. Peng, Y. Z. Cheng, H. Wang, Z. X. Yu, D. F. Chen, and Z. B. Hu, Sol. Stat. Sci. 8, 665 (2006).
http://dx.doi.org/10.1016/j.solidstatesciences.2006.02.030
17.
17.X. L. Xiao, J. Peng, M. M. Wu, Y. Z. Cheng, D. F. Chen, and Z. B. Hu, J. Alloy. Compd. 465, 556 (2008).
http://dx.doi.org/10.1016/j.jallcom.2007.11.005
18.
18.J. Peng, M. M. Wu, H. Wang, Y. M. Hao, Z. B. Hu, Z. X. Yu, D. F. Chen, R. Kiyanagic, J. S. Fieramosca, S. Short, and J. Jorgensen, J. Alloy. Compd. 453, 49 (2008).
http://dx.doi.org/10.1016/j.jallcom.2006.11.208
19.
19.S. Sumithra, A. K. Tyagi, and A. M. Umarji, Mater. Sci. Eng. B 116, 14 (2005).
http://dx.doi.org/10.1016/j.mseb.2004.08.015
20.
20.S. Sumithra and A. M. Umarji, Mater. Res. Bull. 40, 167 (2005).
http://dx.doi.org/10.1016/j.materresbull.2004.09.009
21.
21.Erjun Liang, Haolei Huo, Junping Wang, and Mingju Chao, J. Phys. Chem. C. 112, 6577 (2008).
http://dx.doi.org/10.1021/jp8013332
22.
22.G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
23.
23.G. Kresse and J. Hafner, Phys. Rev. B 47, 558(R) (1993);
http://dx.doi.org/10.1103/PhysRevB.47.558
23.G. Kresseand J. Hafner, Phys. Rev. B 49, 14251 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.14251
24.
24.P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
25.
25.W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
26.
26.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
27.
27.J. Klimeš, D. R. Bowler, and A. Michaelides, Phys. Rev. B 83, 195131 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195131
28.
28.H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
29.
29.M. Methfessel and A. T. Paxton, Phys. Rev. B 40, 3616 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.3616
30.
30.Atsushi Togo, Fumiyasu Oba, and Isao Tanaka, Phys. Rev. B 78, 134106 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.134106
31.
31.Ann E. Mattsson, Rickard Armiento, Peter A. Schultz, and Thomas R. Mattsson, Phys. Rev. B 73, 195123 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.195123
32.
32.Guillaume Poulet, Philippe Sautet, and Emilio Artacho, Phys. Rev. B 68, 075118 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.075118
33.
33.I-Chun Lin, Ari P. Seitsonen, Ivano Tavernelli, and Ursula Rothlisberger, J. Chem. Theo. Comp. 8, 3902 (2012).
http://dx.doi.org/10.1021/ct3001848
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/2/10.1063/1.4913361
Loading
/content/aip/journal/adva/5/2/10.1063/1.4913361
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/2/10.1063/1.4913361
2015-02-18
2016-09-27

Abstract

We report calculations of water absorption in Y Mo O. The absorption geometry of HO in Y Mo O and the binding property between HO and Y Mo O have been first identified. Our calculated results show that water is chemisorbed in Y Mo O with O of the water binding to the Y3+ cation, which is further strengthened by hydrogen bonding between each of the hydrogen atoms of HO and the bridge O in Y Mo O, shared by polyhedrons YO and MoO. The absorption of water leads to a reduced angle of Y-O-Mo and shortened Y-Mo distance, and consequently volume contraction of the material, almost linearly with the increasing number of water molecules per unit cell, up to eight in total. In addition, our phonon calculation show that the transverse vibration of Y-O-Mo is restricted due to water absorption, which in turn hinders the NTE, as it is mainly originated from this vibrational mode. Our results clarify further the fundamental mechanisms of the large volume shrinkage and the lost NTE of the framework oxide due to water absorption.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/2/1.4913361.html;jsessionid=WzMdiJtJryvDsG03zrcDHoad.x-aip-live-06?itemId=/content/aip/journal/adva/5/2/10.1063/1.4913361&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/2/10.1063/1.4913361&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/2/10.1063/1.4913361'
Right1,Right2,Right3,