Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/2/10.1063/1.4913508
1.
1.E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).
http://dx.doi.org/10.1016/S0370-1573(00)00121-6
2.
2.E. Dagotto, New J. Phys. 7, 67 (2005).
http://dx.doi.org/10.1088/1367-2630/7/1/067
3.
3.Y. Tokura, Rep. Prog. Phys. 69, 797 (2006).
http://dx.doi.org/10.1088/0034-4885/69/3/R06
4.
4.H. Kuwahara, Y. Tomioka, A. Asamitsu, Y. Moritomo, and Y. Tokura, Science 270, 961 (1995).
http://dx.doi.org/10.1126/science.270.5238.961
5.
5.Y. Tomioka, H. Hiraka, Y. Endoh, and Y. Tokura, Phys. Rev. B 74, 104420 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.104420
6.
6.M. K. Srivastava, A. Kaur, K. K. Maurya, V. P. S. Awana, and H. K. Singh, Appl. Phys. Lett. 102, 032402 (2013).
http://dx.doi.org/10.1063/1.4788745
7.
7.M. Uehara, S. Mori, C. H. Chen, and S.-W. Cheong, Nature 399, 560 (1999).
http://dx.doi.org/10.1038/21142
8.
8.L. Ghivelder and F. Parisi, Phys. Rev. B 71, 184425 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.184425
9.
9.P. A. Sharma, S. B. Kim, T. Y. Koo, S. Guha, and S.-W. Cheong, Phys. Rev. B 71, 224416 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.224416
10.
10.W. Wu, C. Israel, N. Hur, S. Park, S.-W. Cheong, and A. de Lozanne, Nature Materials 5, 882 (2006).
11.
11.V. Podzorov, B. G. Kim, V. Kiryukhin, M. E. Gershenson, and S-W. Cheong, Phys. Rev. B 64, 140406R (2001).
http://dx.doi.org/10.1103/PhysRevB.64.140406
12.
12.T. Wu, S. B. Ogale, S. R. Shinde, Amlan Biswas, T. Polletto, R. L. Greene, T. Venkatesan, and A. J. Millis, J. Appl. Phys. 93, 5507 (2003).
http://dx.doi.org/10.1063/1.1566090
13.
13.D. Gillaspie, J. X. Ma, H.-Y. Zhai, T. Z. Ward, H. M. Christen, E. W. Plummer, and J. Shen, J. Appl. Phys. 99, 08S901 (2006).
http://dx.doi.org/10.1063/1.2162050
14.
14.T Dhakal, J Tosado, and A Biswas, Phys. Rev. B 75, 092404 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.092404
15.
15.T. Z. Ward, S. Liang, K. Fuchigami, L. F. Yin, E. Dagotto, E. W. Plummer, and J. Shen, Phys. Rev. Lett. 100, 247204 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.247204
16.
16.V. G. Sathe, A. Ahlawat, R. Rawat, and P. Chaddah, J. Phys.: Condens. Matter 22, 176002 (2010).
http://dx.doi.org/10.1088/0953-8984/22/17/176002
17.
17.T. Wu and J. F. Mitchell, Phys. Rev. B 74, 214423 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.214423
18.
18.J. F. Ding, K. X. Jin, Z. Zhang, and T. Wu, Appl. Phys. Lett. 100, 062402 (2012).
http://dx.doi.org/10.1063/1.3684806
19.
19.S Singh, M. R. Fitzsimmons, H. Jeen, A. Biswas, and M. E. Hawley, Appl. Phys. Lett. 101, 022404 (2012).
http://dx.doi.org/10.1063/1.4733666
20.
20.D. K. Mishra, V. G. Sathe, R. Rawat, and V. Ganesan, J. Phys.: Condens. Matter 25, 175003 (2013).
http://dx.doi.org/10.1088/0953-8984/25/17/175003
21.
21.T. Z. Ward, X. G. Zhang, L. F. Yin, X. Q. Zhang, M. Liu, P. C. Snijders, S. Jesse, E. W. Plummer, Z. H. Cheng, E. Dagotto, and J. Shen, Phys. Rev. Lett. 102, 087201 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.087201
22.
22.H. Jeen and A. Biswas, Phys. Rev. B 88, 024415 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.024415
23.
23.S. Singh, P. Kumar, P. K. Siwach, P. K. Tyagi, and H. K. Singh, Appl. Phys. Lett. 104, 212403 (2014).
http://dx.doi.org/10.1063/1.4880725
24.
24.R. Prasad, M. P. Singh, P. K. Siwach, P. Fournier, and H. K. Singh, Europhysics Lett. 84, 27003 (2008).
http://dx.doi.org/10.1209/0295-5075/84/27003
25.
25.P. Littlewood, Nature 399, 529 (1999).
http://dx.doi.org/10.1038/21083
26.
26.H. Kuwahara, Y. Tomioka, A. Asamitsu, Y. Moritomo, and Y. Tokura, Science 270, 961 (1995).
http://dx.doi.org/10.1126/science.270.5238.961
27.
27.R. Prasad, M. P. Singh, P. K. Siwach, A. Kaur, P. Fournier, and H. K. Singh, Appl. Phys. A 99, 823 (2010).
http://dx.doi.org/10.1007/s00339-010-5595-2
28.
28.A. S. Carneiro, F. C. Fonseca, T. Kimura, and R. F. Jardim, J. Phys.: Condens. Matter 20, 215203 (2008).
http://dx.doi.org/10.1088/0953-8984/20/21/215203
29.
29.A. S. Carneiro, F. C. Fonseca, R. F. Jardim, and T. Kimura, J. Appl. Phys. 93, 8074 (2003).
http://dx.doi.org/10.1063/1.1540181
30.
30.W. Schuddinck, G. Van Tendeloo, A. Barnabe, M. Hervieu, and B. Raveau, J. Magn. Magn. Mater. 211, 105 (2000).
http://dx.doi.org/10.1016/S0304-8853(99)00720-9
31.
31.Y. Tomioka, H. Hiraka, Y. Endoh, and Y. Tokura, Phys. Rev. B 74, 104420 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.104420
32.
32.M. K. Srivastava, P. K. Siwach, A. Kaur, and H. K. Singh, Appl. Phys. Lett. 97, 182503 (2010).
http://dx.doi.org/10.1063/1.3505327
33.
33.M. K. Srivastava, A. Kaur, K. K. Maurya, V. P. S. Awana, and H. K. Singh, Appl. Phys. Lett. 102, 032402 (2013).
http://dx.doi.org/10.1063/1.4788745
34.
34.J. A. Mydosh, Spin Glass: an Experimental Introduction, 2nd ed. (Taylor & Francis Group, London, 1993).
35.
35.J. M. D. Coey, M. Viret, and S. von Molnar, Advances in Physics 48, 167 (1999).
http://dx.doi.org/10.1080/000187399243455
36.
36.A. J. Millis, B. I. Shraiman, and R. Mueller, Phys. Rev. Lett. 77, 175 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.175
37.
37.R. Prasad, H. K. Singh, M. P. Singh, W. Prellier, P. K. Siwach, and A. Kaur, J Appl. Phys. 103, 083906 (2008).
http://dx.doi.org/10.1063/1.2902927
38.
38.D. Emin and T. Holstein, Ann. Phys. (Paris) 53, 439 (1969).
http://dx.doi.org/10.1016/0003-4916(69)90034-7
39.
39.J. Zhang, Y. Xu, S. Cao, G. Cao, Y. Zhang, and C. Jing, Phys. Rev. B 72, 054410 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.054410
40.
40.D. Kumar, J. Sankar, J. Narayan, R. K. Singh, and A. K. Majumdar, Phys. Rev. B 65, 094407 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.094407
41.
41.M. Ziese, Phys. Rev. B 68, 132411 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.132411
42.
42.G. Herranz, F. Sánchez, J. Fontcuberta, V. Laukhin, J. Galibert, M. V. García-Cuenca, C. Ferrater, and M. Varela, Phys. Rev. B 72, 14457 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.014457
43.
43.L. Maritato, C. Adamo, C. Barone, G. M. De Luca, A. Galdi, P. Orgiani, and A. Yu. Petrov, Phys. Rev. B 73, 94456 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.094456
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/2/10.1063/1.4913508
Loading
/content/aip/journal/adva/5/2/10.1063/1.4913508
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/2/10.1063/1.4913508
2015-02-23
2016-09-25

Abstract

Thin films of LaPrCaMnO (y≈0.4) have been grown on single crystal SrTiO (001) by RF sputtering. The structural and surface characterizations confirm the epitaxial nature of these film. However, the difference between the ω-scan of the (002) and (110) peaks and the presence of pits/holes in the step-terrace type surface morphology suggests high density of defect in these films. Pronounced hysteresis between the field cooled cooling (FCC) and field cooled warming (FCW) magnetization measurements suggest towards the non-ergodic magnetic state. The origin of this nonergodicity could be traced to the magnetic liquid like state arising from the delicacy of the coexisting magnetic phases, viz., ferromagnetic and antiferromagnetic-charge ordered (FM/AFM-CO). The large difference between the insulator metal transitions during cooling and warming cycles (T C ∼ 64 K and T W ∼ 123 K) could be regarded as a manifestation of the nonergodicity leading to supercooling of the magnetic liquid while cooling. The nonergodicity and supercooling are weakened by the AFM-FM phase transition induced by an external magnetic field. T and small polaron activation energy corresponding the magnetic liquid state (cooling cycle) vary nonlinearly with the applied magnetic field but become linear in the crystalline solid state (warming cycle). The analysis of the low temperature resistivity data shows that electron-phonon interaction is drastically reduced by the applied magnetic field. The resistivity minimum in the lower temperature region of the self-field warming curve has been explained in terms of the Kondo like scattering in the magnetically inhomogeneous regime.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/2/1.4913508.html;jsessionid=RDpmk82YVwPr8sAw3T15isHv.x-aip-live-02?itemId=/content/aip/journal/adva/5/2/10.1063/1.4913508&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/2/10.1063/1.4913508&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/2/10.1063/1.4913508'
Right1,Right2,Right3,