Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. Zmuidzinas and P. L. Richards, Proc. IEEE 92, 15971616 (2004).
2.H.-W. Hübers, IEEE J. Sel. Top. Quant. 14, 378391 (2008).
3.C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, Supercond. Sci. Technol. 25, 063001 (2012).
4.K. S. Il’in, M. Lindgren, M. Currie, A. D. Semenov, G. N. Gol’tsman, R. Sobolewski, S. I. Cherednichenko, and E. M. Gershenzon, Appl. Phys. Lett. 76, 27522754 (2000).
5.E. Gerecht, C. F. Musante, Y. Zhuang, K. S. Yngvesson, T. Goyette, J. C. Dickinson, J. Waldman, P. A. Yagoubov, G. N. Gol’tsman, B. M. Voronov, and E. M. Gershenzon, IEEE Trans. Microwave Theory Tech. 47, 25192527 (1999).
6.G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, Appl. Phys. Lett. 79, 705707 (2001).
7.J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410, 6364 (2001).
8.H. J. Choi, D. Roundy, H. Sun, M. L. Cohen, and S. G. Louie, Nature 418, 758760 (2002).
9.L. Parlato, R. Latempa, G. Peluso, G. P. Pepe, R. Cristiano, and R. Sobolewski, Supercond. Sci. Technol. 18, 12441251 (2005).
10.H. Shimakage, M. Tatsumi, and Z. Wang, Supercond. Sci. Technol. 21, 095009 (2008).
11.H. Shibata, T. Maruyama, T. Akazaki, H. Takesue, T. Honjo, and Y. Tokura, Physica C 468, 19921994 (2008).
12.H. Shibata, T. Akazaki, and Y. Tokura, Supercond. Sci. Technol. 26, 035005 (2013).
13.H. Shimakage and Z. Wang, IEEE Trans. Appl. Supercond. 23, 2200104 (2013).
14.Y. Z. Wang, C. G. Zhuang, X. Sun, X. Huang, Q. Fu, Z. M. Liao, D. P. Yu, and Q. R. Feng, Supercond. Sci. Technol. 22, 125015 (2009).
15.C. G. Zhuang, K. Chen, J. M. Redwing, Q. Li, and X. X. Xi, Supercond. Sci. Technol. 23, 055004 (2010).
16.Y. H. Zhang, Z. Y. Lin, Q. Dai, D. Y. Li, Y. B. Wang, Y. Zhang, Y. Wang, and Q. R. Feng, Supercond. Sci. Technol. 24, 015013 (2011).
17.C. Zhang, Y. Wang, D. Wang, Y. Zhang, Q.-R. Feng, and Z.-Z. Gan, IEEE Trans. Appl. Supercond. 23, 7500204 (2013).
18.S. Bevilacqua, S. Cherednichenko, V. Drakinskiy, J. Stake, H. Shibata, and Y. Tokura, Appl. Phys. Lett. 100, 033504 (2012).
19.H. Shibata, H. Takesue, T. Honjo, T. Akazaki, and Y. Tokura, Appl. Phys. Lett. 97, 212504 (2010).
20.H. Shibata, T. Akazaki, and Y. Tokura, Appl. Phys. Express 6, 023101 (2013).
21.H. Shibata, Appl. Phys. Express 7, 103101 (2014).
22.X. H. Zeng, A. V. Pogrebnyakov, A. Kotcharov, J. E. Jones, X. X. Xi, E. M. Lysczek, J. M. Redwing, S. Y. Xu, Q. Li, J. Lettieri, D. G. Schlom, W. Tian, X. Q. Pan, and Z. K. Liu, Nature Mater. 1, 3538 (2002).
23.Z.-K. Liu, D. G. Schlom, Q. Li, and X. X. Xi, Appl. Phys. Lett. 78, 3678 (2001).
24.D. Wang, C. Zhang, J. Zhang, Y. Zhang, Q.-R. Feng, Y. Wang, and Z.-Z. Gan, IEEE Trans. Appl. Supercond. 25, 7500109 (2015).
25.C. Zhang, Y. Wang, D. Wang, Y. Zhang, Z.-H. Liu, Q.-R. Feng, and Z.-Z. Gan, J. Appl. Phys. 114, 023903 (2013).
26.L. N. Cooper, Phys. Rev. Lett. 6, 689690 (1961).
27.C. G. Zhuang, S. Meng, C. Y. Zhang, Q. R. Feng, Z. Z. Gan, H. Yang, Y. Jia, H. H. Wen, and X. X. Xi, J. Appl. Phys. 104, 013924 (2008).

Data & Media loading...


Article metrics loading...



High quality superconducting nanowires were fabricated from ultrathin MgB films by a focused ion beam milling technique. The precursor MgB films in 10 nm thick were grown on MgO substrates by using a hybrid physical-chemical vapor deposition method. The nanowires, in widths of about 300-600 nm and lengths of 1 or 10 μm, showed high superconducting critical temperatures (’s) above 34 K and narrow superconducting transition widths (Δ’s) of 1-3 K. The superconducting critical current density of the nanowires was above 5 × 107 A/cm2 at 20 K. The high , narrow Δ, and high of the nanowires offered the possibility of making MgB-based nano-devices such as hot-electron bolometers and superconducting nanowire single-photon detectors with high operating temperatures at 15-20 K.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd