Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/3/10.1063/1.4914107
1.
1.A. Hernando and M.A. Garcia, J. Nanopart. Res. 13, 5595-5602 (2011).
http://dx.doi.org/10.1007/s11051-011-0257-7
2.
2.F. Rubio-Marcos, C.V. Manzano, J.J. Reinosa, I. Lorite, J.J. Romero, J.F. Fernandez, and M.S. Martin-Gonzalez, J. Alloy. Compd. 509, 2891-2896 (2011).
http://dx.doi.org/10.1016/j.jallcom.2010.11.149
3.
3.M.S. Martín-González, M.A. García, J.L. Costa-Krämer, I. Lorite, F. Rubio-Marcos, N. Carmona, and J.F. Fernández, J. Electrochem. Soc. 15, E31-E35 (2010).
http://dx.doi.org/10.1149/1.3272638
4.
4.H. Richter, L. Wang, and L. Ley, Solid State Commun. 39, 625 (1981).
http://dx.doi.org/10.1016/0038-1098(81)90337-9
5.
5.W.H. Weber, K.C. Hass, and J.R. McBride, Phys. Rev. B 48, 178 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.178
6.
6.S. Tsunekawa, R. Sahara, Y. Kawazoe, and A. Kasuya, Mater. Trans 41, 1104 (2000).
http://dx.doi.org/10.2320/matertrans1989.41.1104
7.
7.A. Trovarelli, C. de Leitenburg, M. Boaro, and G. Dolcetti, Catal. Today 50, 353 (1999).
http://dx.doi.org/10.1016/S0920-5861(98)00515-X
8.
8.E. Bekyarova, P. Fornasiero, J. Kaspar, and M. Graziani, Catal. Today 45, 179 (1998).
http://dx.doi.org/10.1016/S0920-5861(98)00212-0
9.
9.H. Yahiro, Y. Baba, K. Eguchi, and H. Arai, J. Electrochem. Soc. 135, 2077 (1988).
http://dx.doi.org/10.1149/1.2096212
10.
10.G. Haas, J.B. Ramsey, and R. Thun, J. Opt. Soc. Am. 48, 324 (1957).
http://dx.doi.org/10.1364/JOSA.48.000324
11.
11.S. Tsunekawa, R. Sahara, Y. Kawazoe, and A. Kasuya, Mater. Trans 41, 1104 (2000).
http://dx.doi.org/10.2320/matertrans1989.41.1104
12.
12.N. Izu, W. Shin, N. Murayama, and S. Kanzaki, Sens. Actuator B: Chem. 87, 95 (2002).
http://dx.doi.org/10.1016/S0925-4005(02)00224-1
13.
13.J.F. Fernández Lozano, I. Lorite Villalba, F. Rubio Marcos, J.J. Romero, M.A. García García-Tuñón, A. Quesada Michelena, M.S. Martín González, and J.L. Costa Kramer, patent # WO2010/010220 A1.
14.
14.W.H. Weber, K.C. Hass, and J.R. McBride, Phys. Rev. B 48, 178 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.178
15.
15.Jonathan E. Spanier, Richard D. Robinson, Feng Zhang, Siu-Wai Chan, and Irving P. Herman, Phys. Rev. B 64, 245407.
http://dx.doi.org/10.1103/PhysRevB.64.245407
16.
16.I. Lorite, A. del Campo, J. J. Romero, and J. F. Fernández, J Raman Spectroscopy 47, 7, 889-894 (2012).
http://dx.doi.org/10.1002/jrs.3112
17.
17.I. Lorite, J. J. Romero, and J. F. Fernández, J Raman Spectroscopy 43, 1443, 889-894 (2012).
http://dx.doi.org/10.1002/jrs.4098
18.
18.G. W. Graham, W. H. Weber, C. R. Peters, and R. Usmen, J. Catal. 130, 310-313 (1991).
http://dx.doi.org/10.1016/0021-9517(91)90113-I
19.
19.W. H. Weber, K. C. Hass, and J. R. McBride, Phys. Rev. B. 48, 178-185 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.178
20.
20.S. Phokaa, P. Laokula, E. Swatsitanga, V. Promarakb, S. Seraphinc, and S. Maensiria, Materials Chemistry and Physics 115, 423-428 (2009).
http://dx.doi.org/10.1016/j.matchemphys.2008.12.031
21.
21.S. Saitzek, J.-F. Blach, S. Villain, and J.-R. Gavarri, Phys. Stat. Sol. A. 205, 1534-1539 (2008).
http://dx.doi.org/10.1002/pssa.200723419
22.
22.Akhilesh K. Arora, T. R. Ravindrana, G.L.N. Reddya, Arun K. Sikderb, and D.S. Misra, Diamond and Related Materials 10, 1477-1485 (2001).
http://dx.doi.org/10.1016/S0925-9635(00)00616-6
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/3/10.1063/1.4914107
Loading
/content/aip/journal/adva/5/3/10.1063/1.4914107
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/3/10.1063/1.4914107
2015-03-02
2016-09-28

Abstract

The agglomeration state facilitates particle-particle interaction which produces important effects in the phonon confinement effects at the nanoscale. A partial phonon transmission between close nanoparticles yields a lower momentum conservation relaxation than in a single isolated nanoparticle. It means a larger red shift and broadening of the Raman modes than the expected ones for Raman quantum confinement effects. This particle-particle interaction can drive to error when Raman responses are used to estimate the size of the nanoscaled materials. In this work different corrections are suggested to overtake this source of error.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/3/1.4914107.html;jsessionid=drJcDVL5EkAZdrknVL9aJAv_.x-aip-live-02?itemId=/content/aip/journal/adva/5/3/10.1063/1.4914107&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/3/10.1063/1.4914107&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/3/10.1063/1.4914107'
Right1,Right2,Right3,