Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/3/10.1063/1.4914186
1.
1.S. Gupta, E. Heintzman, and J. Jasinski, J. Electronic Materials 43, 3458 (2014).
http://dx.doi.org/10.1007/s11664-014-3277-0
2.
2.A. K. Geim and K. S. Novoselov, Nature Materials 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
3.
3.K. S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
4.
4.K. I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Commun. 146, 351 (2008).
http://dx.doi.org/10.1016/j.ssc.2008.02.024
5.
5.A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Nano Lett. 8, 902907 (2008).
http://dx.doi.org/10.1021/nl0731872
6.
6.R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, and A. K. Geim, Science 320, 1308 (2008).
http://dx.doi.org/10.1126/science.1156965
7.
7.M.D. Stoller, S. Park, Y. Zhu, J. An, and R.S. Ruoff, Nano Lett. 8, 3498 (2008).
http://dx.doi.org/10.1021/nl802558y
8.
8.C. Lee, X.D. Wei, J.W. Kysar, and J. Hone, Science 321, 385388 (2008).
http://dx.doi.org/10.1126/science.1157996
9.
9.M. Eizenberg and J.M. Blakely, Surf. Sci. 82, 228 (1970).
http://dx.doi.org/10.1016/0039-6028(79)90330-3
10.
10.C. Berger, Z.M. Song, X.B. Li, X.S. Wu, N. Brown, C. Naud, D. Mayou, T.B. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, and W.A. de Heer, Science 312, 1191 (2006).
http://dx.doi.org/10.1126/science.1125925
11.
11.Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z.Y. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, K. Gun’Ko Yurii, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, and J.N. Coleman, Nat. Nanotechnol. 3, 563 (2008).
http://dx.doi.org/10.1038/nnano.2008.215
12.
12.L. Guardia, M.J.F. Merino, J.I. Paredes, P.S. Fernández, S.V. Rodil, A.M. Alonso, and J.M.D. Tascón, Carbon 49, 1653 (2011).
http://dx.doi.org/10.1016/j.carbon.2010.12.049
13.
13.A. Ciesielski and P. Samon, Chem. Soc. Rev. 43, 381 (2014).
http://dx.doi.org/10.1039/C3CS60217F
14.
14.W. Du, X. Jiang, and L. Zhu, J. Mater. Chem. A 1, 10592 (2013).
http://dx.doi.org/10.1039/c3ta12212c
15.
15.J. N. Coleman, Adv. Funct. Mater. 19, 3680 (2009).
http://dx.doi.org/10.1002/adfm.200901640
16.
16.S. Watcharotone, D.A. Dikin, S. Stanokovich, R. Piner, I. Jung, G.H.B. Dommett, G. Evmenenko, S.E. Wu, S.F. Chen, C.P. Liu, S.T. Nguyen, and R.S. Ruoff, Nano Lett. 7, 1888 (2007).
http://dx.doi.org/10.1021/nl070477+
17.
17.W. Hummers and J.R. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).
http://dx.doi.org/10.1021/ja01539a017
18.
18.K. P. Loh, Q. Bao, G. Eda, and M. Chowalla, Nat. Chem. 2, 1015 (2010).
http://dx.doi.org/10.1038/nchem.907
19.
19.G. Eda and M. Chowalla, Adv. Mater. 22, 2392 (2010).
http://dx.doi.org/10.1002/adma.200903689
20.
20.P. Blake, P.D. Brimicombe, R.R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H.F. Gleeson, E. W. Hill, A.K. Geim, and K.S. Novoselov, Nano Lett. 8, 1704 (2008).
http://dx.doi.org/10.1021/nl080649i
21.
21.B. Luo, S.M. Liu, and J.L. Zhi, Small 8, 630 (2012).
http://dx.doi.org/10.1002/smll.201101396
22.
22.Y. Ohno, K. Maehashi, Y. Yamashiro, and K. Matsumoto, Nano Lett. 9 (2009).
http://dx.doi.org/10.1021/nl901596m
23.
23.I.V. Pavlidis, M. Patila, U.T. Bornscheuer, D. Gournis, and H. Stamatis, Trends in Biotechnology 32, 312 (2014).
http://dx.doi.org/10.1016/j.tibtech.2014.04.004
24.
24.S. Park, J. An, R.D. Piner, I. Jung, D. Yang, A. Velamakanni, S.T. Binh, and R. S. Ruoff, Chem. Mater. 20, 6592 (2008).
http://dx.doi.org/10.1021/cm801932u
25.
25.S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, and R. S. Ruoff, Carbon 49, 3019 (2011).
http://dx.doi.org/10.1016/j.carbon.2011.02.071
26.
26.J. T. Robinson, F. K. Perkins, E.S. Snow, Z. Wei, and P.E. Sheeshan, Nano Lett. 8, 3137 (2008).
http://dx.doi.org/10.1021/nl8013007
27.
27.X. Zuo, S. He, D. Li, C. Peng, Q. Huang, S. Song, and C. Fan, Langmuir 26, 1936 (2010).
http://dx.doi.org/10.1021/la902496u
28.
28.A. H. C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, Rev. Mod. Phys. 81, 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
29.
29.J. A. Cracknell, K.A. Vincent, and F.A. Armstrong, Chem. Rev. 108, 2439 (2008).
http://dx.doi.org/10.1021/cr0680639
30.
30.Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, and Y. Lin, Electroanalysis 22, 1027 (2012).
http://dx.doi.org/10.1002/elan.200900571
31.
31.D. Voet and J.G. Voet, Biochemistry, 2nd ed. (John Wiley & Sons, New York, 1993).
32.
32.L.J.C. Jeuken, Biochim. Biophys. Acta 1604, 67 (2003).
http://dx.doi.org/10.1016/S0005-2728(03)00026-4
33.
33.Y. Choi and S. T. Yau, AIP Advances 1, 042175-1 (2011).
http://dx.doi.org/10.1063/1.3672093
34.
34.M. J. Eddowes and H. A. O. Hill, J. Chem. Soc., Chem. Commun. 7711b (1977).
35.
35.J. H. T. Luong and K.B. Male, J.D. GlennonAnalyst 134, 1965 (2009).
36.
36.C. Leger and P. Bertrand, Chem. Rev. 108, 2379 (2008).
http://dx.doi.org/10.1021/cr0680742
37.
37.J. Guo, X. Yao, L. Ning, Q. Wang, and H. Liu, RSC Adv. 4, 9953 (2014).
http://dx.doi.org/10.1039/c3ra45876h
38.
38.K. R. Brown, A.P. Fox, and M.J. Natan, J. Am. Chem. Soc. 118, 1154 (1996).
http://dx.doi.org/10.1021/ja952951w
39.
39.M. Patila, I.V. Pavlidis, E.K. Diamanti, P. Katapodis, D. Gournis, and H. Stamatis, Process Biochemistry 48, 1010 (2013).
http://dx.doi.org/10.1016/j.procbio.2013.04.021
40.
40.Y.Y. Sun, F. Yan, W.S. Yang, and C.Q. Sun, Biomaterials 27, 4042 (2006).
http://dx.doi.org/10.1016/j.biomaterials.2006.03.014
41.
41.D. Scott, M. Toney, and M. Muzikar, J. Am. Chem. Soc. 130, 865 (2008).
http://dx.doi.org/10.1021/ja074660g
42.
42.I. V. Pavlidis, T. Vorhaben, D. Gournis, G.K. Papadopoulos, U.T. Bornscheuer, and H. Stamatis, J. Nanopart. Res. 14, 842 (2012).
http://dx.doi.org/10.1007/s11051-012-0842-4
43.
43.K.A. Vincent, X. Li, C.F. Blanford, N.A. Belsey, J.H. Weiner, and F.A. Armstrong, Nat. Chem. Biol. 3, 761 (2007).
http://dx.doi.org/10.1038/nchembio.2007.47
44.
44.C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, and L. Niu, Anal. Chem. 81, 2378 (2009).
http://dx.doi.org/10.1021/ac802193c
45.
45.R. J. Chen, H.C. Choi, S. Bangsaruntip, E. Yenilmez, X. W. Tang, Q. Wang, Y.L. Chang, and H. J. Dai, J. Am. Chem. Soc. 126, 1563 (2004).
http://dx.doi.org/10.1021/ja038702m
46.
46.M. Guo, B. Bhaskar, H. Li, T.P. Barrows, and T.L. Poulos, Proc. Nat. Acad. Sci. 101, 5940 (2004).
http://dx.doi.org/10.1073/pnas.0306708101
47.
47.See supplementary material at http://dx.doi.org/10.1063/1.4914186 for materials and methods describing the liquid-phase exfoliated graphene sheets, GO and rGO fabrication, structural characterization in solution and as flakes on solid substrates, a Table enlisting Raman spectral features in this work and comparison with reported literature values and some of the cyclic voltammogram data for myoglobin (Mb).[Supplementary Material]
48.
48.A.I. Yaropolov, M.R. Tarasevich, and S.D. Varfolomeev, Bioelectrochem. Bioenerg. 5, 18 (1978).
http://dx.doi.org/10.1016/0302-4598(87)87002-2
49.
49.S. F. Ding, W. Wei, and G.C. Zhao, Electrochem. Commun. 9, 2202 (2007).
http://dx.doi.org/10.1016/j.elecom.2007.06.023
50.
50.S. Alwarappan, R.K. Joshi, M.K. Ram, and A. Kumar, Appl. Phys. Lett. 96, 263702-1 (2010).
http://dx.doi.org/10.1063/1.3458698
51.
51.J. Kim, J.W. Grate, and P. Wang, Trends Biotechnol. 26, 639 (2008).
http://dx.doi.org/10.1016/j.tibtech.2008.07.009
52.
52.M. Collinson and E.F. Bowden, Anal. Chem. 64, 1470 (1992).
http://dx.doi.org/10.1021/ac00037a028
53.
53.K. L. Adams, S. Tsoi, J. Yan, S. M. Durbin, A. K. Ramdas, W. A. Cramer, W. Sturhahn, E. E. Alp, and C. Schulz, J. Phys. Chem. B 110, 530 (2006) and references therein.
http://dx.doi.org/10.1021/jp053440r
54.
54.A.E.F. Nassar, Z. Zhang, N. Yu, J.F. Rusling, and T.F. J. Kumosinski, Phys. Chem. B 101, 2224 (1997).
http://dx.doi.org/10.1021/jp962896t
55.
55.E. Laviron, J. Electroanal. Chem. 101, 19 (1979).
http://dx.doi.org/10.1016/S0022-0728(79)80075-3
56.
56.R. E.M. Diederix, M. Ubbink, and G.W. Canters, Biochemistry 41, 13067 (2002).
http://dx.doi.org/10.1021/bi0260841
57.
57.C. L. Xiang, Y.J. Zhou, L.X. Sun, and F. Xu, Talanta 74, 206 (2007).
http://dx.doi.org/10.1016/j.talanta.2007.05.050
58.
58.Q.C. Li and P.A. Marbouk, J. Biol. Inorg. Chem. 8, 83 (2003).
http://dx.doi.org/10.1007/s00775-002-0392-9
59.
59.T. H. Yosca, R.K. Behan, C.M. Krest, E.L. Onderko, M.C. Langston, and M.T. Green, J. Am. Chem. Soc. 136, 9124 (2014).
http://dx.doi.org/10.1021/ja503588n
60.
60.B.C. King, F.M. Hawkridge, and B.M. Hoffman, J. Am. Chem. Soc. 114, 10603 (1992).
http://dx.doi.org/10.1021/ja00052a066
61.
61.T. Ruzgas, E. Csoregi, J. Emnéus, L. Gorton, and G.M. Varga, Anal. Chim. Acta 330, 123 (1996).
http://dx.doi.org/10.1016/0003-2670(96)00169-9
62.
62.S.V.N.T. Kuchibhatla, A.S. Karakoti, D. Bea, and S. Seal, Prog. Mater. Sci. 52, 699 (2007).
http://dx.doi.org/10.1016/j.pmatsci.2006.08.001
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/3/10.1063/1.4914186
Loading
/content/aip/journal/adva/5/3/10.1063/1.4914186
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/3/10.1063/1.4914186
2015-03-06
2016-09-28

Abstract

Graphene-based nanomaterials have shown great promise not only in nanoelectronics due to ultrahigh electron mobility but also as biocatalytic scaffolds owing to irreversible protein surface adsorption and facilitating direct electron transfer. In this work, we synthesized stable dispersions of graphene using liquid-phase exfoliation approach based on non-covalent interactions between graphene and 1-pyrenesulfonic acid sodium salt (Py–1SO), 1-pyrenemethylamine salt (Py − Me-NH) and Pluronic® P-123 surfactant using only water as solvent compatible with biomolecules. The resulting graphene nanoplatelets (Gr_LPE) are characterized by a combination of analytical (microscopy and spectroscopy) techniques revealing mono- to few-layer graphene displaying that the exfoliation efficiency strongly depends upon the type of pyrene-based salts and organic surfactants. Moreover being completely water-based approach, we build robust nanoscaffolds of graphene-family nanomaterials (GFNs) namely, monolayer graphene, Gr_LPE (the one prepared with Pluronic® P-123), graphene oxide (GO) and its reduced form (rGO) on glassy carbon electrode surface with three important metalloproteins include cytochrome (Cyt ) [for electron transfer], myoglobin (Mb) [for oxygen storage] and horseradish peroxidase (HRP) [for catalyzing the biochemical reaction]. In order to demonstrate the nanobiocatalytical activity of these proteins, we used electrochemical interfacial direct electron transfer (DET) kinetics and attempt to determine the rate constant (k) using two different analytical approaches namely, linear sweep voltammetry and Laviron’s theory. We elucidated that all of the metalloproteins retain their structural integrity (secondary structure) upon forming mixtures with GFNs confirmed through optical and vibrational spectroscopy and biological activity using electrochemistry. Among the GFNs studied, Gr-LPE, GO and rGO support the efficient electrical wiring of the redox centers (with an increase in catalytic efficiency of Cyt and Mb in the presence of GFNs attributed partially to the surface functional (carboxyl, epoxide and hydroxyl) groups on GO and rGO facilitating rapid charge transfer.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/3/1.4914186.html;jsessionid=p8IQdA6yzNFXle8we_byLuQT.x-aip-live-03?itemId=/content/aip/journal/adva/5/3/10.1063/1.4914186&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/3/10.1063/1.4914186&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/3/10.1063/1.4914186'
Right1,Right2,Right3,