Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.S. Gupta, E. Heintzman, and J. Jasinski, J. Electronic Materials 43, 3458 (2014).
2.A. K. Geim and K. S. Novoselov, Nature Materials 6, 183 (2007).
3.K. S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).
4.K. I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Commun. 146, 351 (2008).
5.A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Nano Lett. 8, 902907 (2008).
6.R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, and A. K. Geim, Science 320, 1308 (2008).
7.M.D. Stoller, S. Park, Y. Zhu, J. An, and R.S. Ruoff, Nano Lett. 8, 3498 (2008).
8.C. Lee, X.D. Wei, J.W. Kysar, and J. Hone, Science 321, 385388 (2008).
9.M. Eizenberg and J.M. Blakely, Surf. Sci. 82, 228 (1970).
10.C. Berger, Z.M. Song, X.B. Li, X.S. Wu, N. Brown, C. Naud, D. Mayou, T.B. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, and W.A. de Heer, Science 312, 1191 (2006).
11.Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z.Y. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, K. Gun’Ko Yurii, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, and J.N. Coleman, Nat. Nanotechnol. 3, 563 (2008).
12.L. Guardia, M.J.F. Merino, J.I. Paredes, P.S. Fernández, S.V. Rodil, A.M. Alonso, and J.M.D. Tascón, Carbon 49, 1653 (2011).
13.A. Ciesielski and P. Samon, Chem. Soc. Rev. 43, 381 (2014).
14.W. Du, X. Jiang, and L. Zhu, J. Mater. Chem. A 1, 10592 (2013).
15.J. N. Coleman, Adv. Funct. Mater. 19, 3680 (2009).
16.S. Watcharotone, D.A. Dikin, S. Stanokovich, R. Piner, I. Jung, G.H.B. Dommett, G. Evmenenko, S.E. Wu, S.F. Chen, C.P. Liu, S.T. Nguyen, and R.S. Ruoff, Nano Lett. 7, 1888 (2007).
17.W. Hummers and J.R. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).
18.K. P. Loh, Q. Bao, G. Eda, and M. Chowalla, Nat. Chem. 2, 1015 (2010).
19.G. Eda and M. Chowalla, Adv. Mater. 22, 2392 (2010).
20.P. Blake, P.D. Brimicombe, R.R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H.F. Gleeson, E. W. Hill, A.K. Geim, and K.S. Novoselov, Nano Lett. 8, 1704 (2008).
21.B. Luo, S.M. Liu, and J.L. Zhi, Small 8, 630 (2012).
22.Y. Ohno, K. Maehashi, Y. Yamashiro, and K. Matsumoto, Nano Lett. 9 (2009).
23.I.V. Pavlidis, M. Patila, U.T. Bornscheuer, D. Gournis, and H. Stamatis, Trends in Biotechnology 32, 312 (2014).
24.S. Park, J. An, R.D. Piner, I. Jung, D. Yang, A. Velamakanni, S.T. Binh, and R. S. Ruoff, Chem. Mater. 20, 6592 (2008).
25.S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, and R. S. Ruoff, Carbon 49, 3019 (2011).
26.J. T. Robinson, F. K. Perkins, E.S. Snow, Z. Wei, and P.E. Sheeshan, Nano Lett. 8, 3137 (2008).
27.X. Zuo, S. He, D. Li, C. Peng, Q. Huang, S. Song, and C. Fan, Langmuir 26, 1936 (2010).
28.A. H. C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, Rev. Mod. Phys. 81, 109 (2009).
29.J. A. Cracknell, K.A. Vincent, and F.A. Armstrong, Chem. Rev. 108, 2439 (2008).
30.Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, and Y. Lin, Electroanalysis 22, 1027 (2012).
31.D. Voet and J.G. Voet, Biochemistry, 2nd ed. (John Wiley & Sons, New York, 1993).
32.L.J.C. Jeuken, Biochim. Biophys. Acta 1604, 67 (2003).
33.Y. Choi and S. T. Yau, AIP Advances 1, 042175-1 (2011).
34.M. J. Eddowes and H. A. O. Hill, J. Chem. Soc., Chem. Commun. 7711b (1977).
35.J. H. T. Luong and K.B. Male, J.D. GlennonAnalyst 134, 1965 (2009).
36.C. Leger and P. Bertrand, Chem. Rev. 108, 2379 (2008).
37.J. Guo, X. Yao, L. Ning, Q. Wang, and H. Liu, RSC Adv. 4, 9953 (2014).
38.K. R. Brown, A.P. Fox, and M.J. Natan, J. Am. Chem. Soc. 118, 1154 (1996).
39.M. Patila, I.V. Pavlidis, E.K. Diamanti, P. Katapodis, D. Gournis, and H. Stamatis, Process Biochemistry 48, 1010 (2013).
40.Y.Y. Sun, F. Yan, W.S. Yang, and C.Q. Sun, Biomaterials 27, 4042 (2006).
41.D. Scott, M. Toney, and M. Muzikar, J. Am. Chem. Soc. 130, 865 (2008).
42.I. V. Pavlidis, T. Vorhaben, D. Gournis, G.K. Papadopoulos, U.T. Bornscheuer, and H. Stamatis, J. Nanopart. Res. 14, 842 (2012).
43.K.A. Vincent, X. Li, C.F. Blanford, N.A. Belsey, J.H. Weiner, and F.A. Armstrong, Nat. Chem. Biol. 3, 761 (2007).
44.C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, and L. Niu, Anal. Chem. 81, 2378 (2009).
45.R. J. Chen, H.C. Choi, S. Bangsaruntip, E. Yenilmez, X. W. Tang, Q. Wang, Y.L. Chang, and H. J. Dai, J. Am. Chem. Soc. 126, 1563 (2004).
46.M. Guo, B. Bhaskar, H. Li, T.P. Barrows, and T.L. Poulos, Proc. Nat. Acad. Sci. 101, 5940 (2004).
47.See supplementary material at for materials and methods describing the liquid-phase exfoliated graphene sheets, GO and rGO fabrication, structural characterization in solution and as flakes on solid substrates, a Table enlisting Raman spectral features in this work and comparison with reported literature values and some of the cyclic voltammogram data for myoglobin (Mb).[Supplementary Material]
48.A.I. Yaropolov, M.R. Tarasevich, and S.D. Varfolomeev, Bioelectrochem. Bioenerg. 5, 18 (1978).
49.S. F. Ding, W. Wei, and G.C. Zhao, Electrochem. Commun. 9, 2202 (2007).
50.S. Alwarappan, R.K. Joshi, M.K. Ram, and A. Kumar, Appl. Phys. Lett. 96, 263702-1 (2010).
51.J. Kim, J.W. Grate, and P. Wang, Trends Biotechnol. 26, 639 (2008).
52.M. Collinson and E.F. Bowden, Anal. Chem. 64, 1470 (1992).
53.K. L. Adams, S. Tsoi, J. Yan, S. M. Durbin, A. K. Ramdas, W. A. Cramer, W. Sturhahn, E. E. Alp, and C. Schulz, J. Phys. Chem. B 110, 530 (2006) and references therein.
54.A.E.F. Nassar, Z. Zhang, N. Yu, J.F. Rusling, and T.F. J. Kumosinski, Phys. Chem. B 101, 2224 (1997).
55.E. Laviron, J. Electroanal. Chem. 101, 19 (1979).
56.R. E.M. Diederix, M. Ubbink, and G.W. Canters, Biochemistry 41, 13067 (2002).
57.C. L. Xiang, Y.J. Zhou, L.X. Sun, and F. Xu, Talanta 74, 206 (2007).
58.Q.C. Li and P.A. Marbouk, J. Biol. Inorg. Chem. 8, 83 (2003).
59.T. H. Yosca, R.K. Behan, C.M. Krest, E.L. Onderko, M.C. Langston, and M.T. Green, J. Am. Chem. Soc. 136, 9124 (2014).
60.B.C. King, F.M. Hawkridge, and B.M. Hoffman, J. Am. Chem. Soc. 114, 10603 (1992).
61.T. Ruzgas, E. Csoregi, J. Emnéus, L. Gorton, and G.M. Varga, Anal. Chim. Acta 330, 123 (1996).
62.S.V.N.T. Kuchibhatla, A.S. Karakoti, D. Bea, and S. Seal, Prog. Mater. Sci. 52, 699 (2007).

Data & Media loading...


Article metrics loading...



Graphene-based nanomaterials have shown great promise not only in nanoelectronics due to ultrahigh electron mobility but also as biocatalytic scaffolds owing to irreversible protein surface adsorption and facilitating direct electron transfer. In this work, we synthesized stable dispersions of graphene using liquid-phase exfoliation approach based on non-covalent interactions between graphene and 1-pyrenesulfonic acid sodium salt (Py–1SO), 1-pyrenemethylamine salt (Py − Me-NH) and Pluronic® P-123 surfactant using only water as solvent compatible with biomolecules. The resulting graphene nanoplatelets (Gr_LPE) are characterized by a combination of analytical (microscopy and spectroscopy) techniques revealing mono- to few-layer graphene displaying that the exfoliation efficiency strongly depends upon the type of pyrene-based salts and organic surfactants. Moreover being completely water-based approach, we build robust nanoscaffolds of graphene-family nanomaterials (GFNs) namely, monolayer graphene, Gr_LPE (the one prepared with Pluronic® P-123), graphene oxide (GO) and its reduced form (rGO) on glassy carbon electrode surface with three important metalloproteins include cytochrome (Cyt ) [for electron transfer], myoglobin (Mb) [for oxygen storage] and horseradish peroxidase (HRP) [for catalyzing the biochemical reaction]. In order to demonstrate the nanobiocatalytical activity of these proteins, we used electrochemical interfacial direct electron transfer (DET) kinetics and attempt to determine the rate constant (k) using two different analytical approaches namely, linear sweep voltammetry and Laviron’s theory. We elucidated that all of the metalloproteins retain their structural integrity (secondary structure) upon forming mixtures with GFNs confirmed through optical and vibrational spectroscopy and biological activity using electrochemistry. Among the GFNs studied, Gr-LPE, GO and rGO support the efficient electrical wiring of the redox centers (with an increase in catalytic efficiency of Cyt and Mb in the presence of GFNs attributed partially to the surface functional (carboxyl, epoxide and hydroxyl) groups on GO and rGO facilitating rapid charge transfer.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd