Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/3/10.1063/1.4914842
1.
1.R. C. Powell, N.E. Lee, and J. E. Greene, Appl. Phys. Lett. 60, 2505 (1992).
http://dx.doi.org/10.1063/1.106948
2.
2.F.A. Ponce and D.P. Bour, Nature 386, 351 (1997).
http://dx.doi.org/10.1038/386351a0
3.
3.S. Nakamura, Jpn. J. Appl. Phys. 30, 1705 (1991).
http://dx.doi.org/10.1143/JJAP.30.L1705
4.
4.B. N. Pantha, R. Dahal, J. Li, J. Y. Lin, H. X. Jiang, and G. Pomrenke, Appl. Phys. Lett. 92, 042112 (2008).
http://dx.doi.org/10.1063/1.2839309
5.
5.D. V. P. McLaughlin and J. M. Pearce, Metall. Mater. Trans. A 44, 1947 (2013).
http://dx.doi.org/10.1007/s11661-013-1622-1
6.
6.W. Junqiao, J. Appl. Phys. 106, 011101 (2009).
http://dx.doi.org/10.1063/1.3155798
7.
7.E.Y. Lin, C.Y. Chen, T.S. Lay, Z.X. Peng, T.Y. Lin, T.C. Wang, and J.D. Tsay, Physica B 405, 18571860 (2010).
http://dx.doi.org/10.1016/j.physb.2010.01.063
8.
8.Theeradetch Detchprohm, Mingwei Zhu, Yufeng Li, Yong Xia, Christian Wetzel, Edward A. Preble, Lianghong Liu, Tanya Paskova, and Drew Hanser, Appl. Phys. Lett. 92, 241109 (2008).
http://dx.doi.org/10.1063/1.2945664
9.
9.F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 56, R 10 024 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.R10024
10.
10.M. Stutzmann, O. Ambacher, M. Eickhoff, U. Karrer, A. Lima Pimenta, R. Neuberger, J. Schalvig, R. Dimitrov, P. J. Schuck, and R. D. Grober, Phys. Status Solidi B 228, 505 (2001).
http://dx.doi.org/10.1002/1521-3951(200111)228:2%3C505::AID-PSSB505%3E3.0.CO;2-U
11.
11.T. J. Badcock, M. J. Kappers, M. A. Moram, R. Hao, P. Dawson, and C. J. Humphreys, Phys. Status Solidi B 249(3), 494497 (2012).
http://dx.doi.org/10.1002/pssb.201100479
12.
12.Mohana K. Rajpalke, BasantaRoul Mahesh Kumar, Thirumaleshwara N. Bhat, Neeraj Sinha, and S.B. Krupanidhia, ScriptaMaterialia 65, 33-36 (2011).
13.
13.S.Yu. Karpov, MRS Internet Journal of Nitride Semiconductor Research 3, pp. e16 (1988).
http://dx.doi.org/10.1557/S1092578300000880
14.
14.S. Keller, B.P. Keller, D. Kapolnek, A.C. Abare, H. Masui, L.A. Coldren, U.K. Mishra, and S.P. Den Baars, Appl. Phys. Lett. 68, 3147 (1996).
http://dx.doi.org/10.1063/1.115806
15.
15.S. Keller, B.P. Keller, D. Kapolnek, S.P. Den Baars, I.K. Shmagin, R.M. Kolbas, and S. Krishnankutty, J. Cryst. Growth 170, 349 (1997).
http://dx.doi.org/10.1016/S0022-0248(96)00553-2
16.
16.R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, Appl. Phys. Lett. 70, 1089 (1997).
http://dx.doi.org/10.1063/1.118493
17.
17.M. Noda, Y. Kumagai, S. Takado, D. Muto, H. Na, H. Naoi, T. Araki, and Y. Nanishi, Phys. Status Solidi (C) 4(7), 25602563 (2007).
http://dx.doi.org/10.1002/pssc.200674904
18.
18.Keun Man Song, Jong-Min Kim, Chan-Soo Shin, Sung-Min Hwang, and Dae-Ho Yoon, Semicond. Sci. Technol. 27, 015011 (2012).
http://dx.doi.org/10.1088/0268-1242/27/1/015011
19.
19.N.A. El-Masry, E.L. Piner, S.X. Liu, and S.M. Bedair, Appl. Phys. Lett. 72, 40 (1998).
http://dx.doi.org/10.1063/1.120639
20.
20.R. Singh, D. Doppalapudi, T.D. Moustakas, and L.T. Romano, Appl. Phys. Lett. 70, 1089 (1997).
http://dx.doi.org/10.1063/1.118493
21.
21.Y. P. Varshni, Physica (Utrecht) 34, 149 (1967).
http://dx.doi.org/10.1016/0031-8914(67)90062-6
22.
22.M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gilbart, J. Appl. Phys. 86, 3721 (1996).
http://dx.doi.org/10.1063/1.371242
23.
23.J.S. Huanga, Z. Chena, X.D. Luoa, Z.Y. Xua, and W.K. Ge, J.Cryst. Growth 260, 1317 (2004).
http://dx.doi.org/10.1016/j.jcrysgro.2003.08.008
24.
24.Q Li, S J Xu, M H Xie, and S Y Tong, J. Phys. Condense Matter 17, 48534858 (2005).
http://dx.doi.org/10.1088/0953-8984/17/30/011
25.
25.F. B. Naranjo, M. A. Sánchez-García, F. Calle, and E. Calleja, Appl. Phys. Lett. 80(2), (2002).
26.
26.Yong-Hoon Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. Den Baars, Appl. Phys. Lett. 73, 1370 (1998).
http://dx.doi.org/10.1063/1.122164
27.
27.Tongtong Zhu, Fabrice Oehler, Benjamin P. L. Reid, Robert M. Emery, Robert A. Taylor, Menno J. Kappers, and Rachel A. Oliver, Appl. Phys. Lett. 102, 251905 (2013).
http://dx.doi.org/10.1063/1.4812345
28.
28. LinfengHu, Jian Yan, Meiyong Liao, Limin Wu, and Xiaosheng Fang, Small. 7(8), 10121017 (2011).
http://dx.doi.org/10.1002/smll.201002379
29.
29.D. Kundys, S. Schulz, F. Oehler, D. Sutherland, T. J. Badcock, P. Dawson, M. J. Kappers, R. A. Oliver, and C. J. Humphreys, Journal of Applied Physics 115, 113106 (2014).
http://dx.doi.org/10.1063/1.4868692
30.
30.S. Ghosh, B. K. Sarker, A. Chunder, L. Zhai, and S. I. Khondaker, Appl. Phys. Lett. 96, 163109 (2010).
http://dx.doi.org/10.1063/1.3415499
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/3/10.1063/1.4914842
Loading
/content/aip/journal/adva/5/3/10.1063/1.4914842
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/3/10.1063/1.4914842
2015-03-09
2016-09-27

Abstract

Studies on the optical properties of InGaN alloy of relatively higher indium content are of potential interest to understand the effect of indium content on the optical band gap of epitaxial InGaN. We report the growth of self assembled non-polar high indium clusters of InGaN over non-polar (11-20) a-plane InGaN epilayer grown on a-plane (11-20)GaN/(1-102) r-plane sapphire substrate using plasma assisted molecular beam epitaxy (PAMBE). Such structures are potential candidates for high brightness LEDs emitting in longer wavelengths. The high resolution X-ray diffraction studies revealed the formation of two distinct compositions of InGaN alloys, which were further confirmed by photoluminescence studies. A possible mechanism for the formation of such structure was postulated which was supported with the results obtained by energy dispersive X-ray analysis. The structure hence grown when investigated for photo-detecting properties, showed sensitivity to both infrared and ultraviolet radiations due to the different composition of InGaN region.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/3/1.4914842.html;jsessionid=tQDWms1_hx0tQT-UkR4GFDjA.x-aip-live-03?itemId=/content/aip/journal/adva/5/3/10.1063/1.4914842&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/3/10.1063/1.4914842&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/3/10.1063/1.4914842'
Right1,Right2,Right3,