Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/3/10.1063/1.4914916
1.
1.G. S. Huang, Y. F. Mei, D. J. Thurmer, E. Coric, and O. G. Schmidt, Lab Chip 9, 263 (2009).
http://dx.doi.org/10.1039/B810419K
2.
2.G. S. Huang, V. A. Bolanos Quinones, F. Ding, S. Kiravittaya, Y. F. Mei, and O. G. Schmidt, ACS Nano 4, 3123 (2010).
http://dx.doi.org/10.1021/nn100456r
3.
3.C. C. Bof Bufon, J. D. Arias Espinoza, D. J. Thurmer, M. Bauer, Ch. Deneke, U. Zschieschang, H. Klauk, and O. G. Schmidt, Nano Lett. 11, 3727 (2011).
http://dx.doi.org/10.1021/nl201773d
4.
4.Y. F. Mei, A. A. Solovev, S. Sanchez, and O. G. Schmidt, Chem. Soc. Rev. 40, 2109 (2011).
http://dx.doi.org/10.1039/c0cs00078g
5.
5.V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, Physica E 6, 828 (2000).
http://dx.doi.org/10.1016/S1386-9477(99)00249-0
6.
6.O. G. Schmidt and K. Eberl, Nature 410, 168 (2001).
http://dx.doi.org/10.1038/35065525
7.
7.Y. F. Mei, G. S. Huang, A. A. Solovev, E. B. Ureña, I. Mönch, F. Ding, T. Reindl, K. Y. Fu, P. K. Chu, and O. G. Schmidt, Adv. Mater. 20, 4085 (2008).
http://dx.doi.org/10.1002/adma.200801589
8.
8.M. H. Huang, C. Boone, M. Roberts, D. E. Savage, M. G. Lagally, N. Shaji, H. Qin, R. Blick, J. A. Nairn, and F. Liu, Adv. Mater. 17, 2860 (2005).
http://dx.doi.org/10.1002/adma.200501353
9.
9.J. X. Li, J. Zhang, W. Gao, G. S. Huang, Z. F. Di, R. Liu, J. Wang, and Y. F. Mei, Adv. Mater. 25, 3715 (2012).
http://dx.doi.org/10.1002/adma.201301208
10.
10.A. Malachias, Ch. Deneke, B. Krause, C. Mocuta, S. Kiravittaya, T. H. Metzger, and O. G. Schmidt, Phys. Rev. B 79, 035301 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.035301
11.
11.R. Songmuang, N. Y. Jin-Phillipp, S. Mendach, and O. G. Schmidt, Appl. Phys. Lett. 88, 021913 (2006).
http://dx.doi.org/10.1063/1.2159414
12.
12.A. Bernardi, A. R. Goñi, M. I. Alonso, F. Alsina, H. Scheel, P. O. Vaccaro, and N. Saito, J. Appl. Phys. 99, 063512 (2006).
http://dx.doi.org/10.1063/1.2183353
13.
13.B. Krause, C. Mocuta, T. H. Metzger, Ch. Deneke, and O. G. Schmidt, Phys. Rev. Lett. 96, 165502 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.165502
14.
14.Ch. Deneke, A. Malachias, S. Kiravittaya, M. Benyoucef, T. H. Metzger, and O. G. Schmidt, Appl. Phys. Lett. 96, 143101 (2010).
http://dx.doi.org/10.1063/1.3373592
15.
15.H. L. Zhen, G. S. Huang, S. Kiravittaya, S. L. Li, Ch. Deneke, D. J. Thurmer, Y. F. Mei, O. G. Schmidt, and W. Lu, Appl. Phys. Lett. 102, 041109 (2013).
http://dx.doi.org/10.1063/1.4789534
16.
16.J. A. Rogers, M. G. Lagally, and R. G. Nuzzo, Nature 477, 45 (2011).
http://dx.doi.org/10.1038/nature10381
17.
17.G. S. Huang and Y. F. Mei, Adv. Mater. 24, 2517 (2012).
http://dx.doi.org/10.1002/adma.201200574
18.
18.J. R. Jain, A. Hryciw, T. M. Baer, D. A. B. Miller, M. L. Brongersma, and R. T. Howe, Nat. Photon. 6, 398 (2012).
http://dx.doi.org/10.1038/nphoton.2012.111
19.
19.M. J. Suess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, Nat. Photon. 7, 466 (2013).
http://dx.doi.org/10.1038/nphoton.2013.67
20.
20.J. Welser, J. L. Hoyt, and J. F. Gibbons, IEEE Electron Dev. Lett. 15, 100 (1994).
http://dx.doi.org/10.1109/55.285389
21.
21.Y. F. Mei, S. Kiravittaya, S. Harazim, and O. G. Schmidt, Mater. Sci. & Eng. R: Reports 70, 209 (2010).
http://dx.doi.org/10.1016/j.mser.2010.06.009
22.
22.J. F. Liu, X. C. Sun, D. Pan, X. X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, Opt. Exp. 15, 11272 (2007).
http://dx.doi.org/10.1364/OE.15.011272
23.
23.J. R. Sanchez-Perez, C. Boztug, F. Chen, F. F. Sudradjat, D. M. Paskiewicz, R. Jacobson, M. G. Lagally, and R. Paiella, Proc. Nat. Acad. Sci. U.S.A. 108, 18893 (2011).
http://dx.doi.org/10.1073/pnas.1107968108
24.
24.M. El Kurdi, H. Bertin, E. Martincic, M. de Kersauson, G. Fishman, S. Sauvage, A. Bosseboeuf, and P. Boucaud, Appl. Phys. Lett. 96, 041909 (2010).
http://dx.doi.org/10.1063/1.3297883
25.
25.J. Greil, A. Lugstein, C. Zeiner, G. Strasser, and E. Bertagnolli, Nano Lett. 12, 6230 (2012).
http://dx.doi.org/10.1021/nl303288g
26.
26.A. Thorton and W. D. Hoffman, Thin Solid Films 171, 5 (1989).
http://dx.doi.org/10.1016/0040-6090(89)90030-8
27.
27.I. S. Chun, A. Challa, B. Derickson, K. J. Hsia, and X. L. Li, Nano Lett. 10, 3927 (2010).
http://dx.doi.org/10.1021/nl101669u
28.
28.L. Zhang, E. Ruh, D. Grutzmacher, L. X. Dong, D. J. Bell, B. J. Nelson, and C. Schonenberger, Nano Lett. 6, 1311 (2006).
http://dx.doi.org/10.1021/nl052340u
29.
29.M. J. Suess, R. A. Minamisawa, R. Geiger, K. K. Bourdelle, H. Sigg, and R. Spolenak, Nano Lett. 14, 1249 (2014).
http://dx.doi.org/10.1021/nl404152r
30.
30.G. D. Sun, M. Zhang, Z. Y. Xue, Q. L. Guo, D. Chen, Z. Q. Mu, L. X. Dong, X. Wang, and Z. F. Di, Appl. Phys. Lett. 105, 193505 (2014).
http://dx.doi.org/10.1063/1.4901820
31.
31.K. Mizoguchi and S. Nakashima, J. Appl. Phys. 65, 2583 (1989).
http://dx.doi.org/10.1063/1.342787
32.
32.Masashi Kurosawa, Taizoh Sadoh, and Masanobu Miyao, Appl. Phys. Lett. 98, 012110 (2011).
http://dx.doi.org/10.1063/1.3535606
33.
33.Z. Suo, E. Y. Ma, H. Gleskova, and S. Wagner, Appl. Phys. Lett. 74, 1177 (1999).
http://dx.doi.org/10.1063/1.123478
34.
34.T. Miyatake and G. J. Pezzotti, J. Appl. Phys. 110, 093511 (2011).
http://dx.doi.org/10.1063/1.3656447
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/3/10.1063/1.4914916
Loading
/content/aip/journal/adva/5/3/10.1063/1.4914916
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/3/10.1063/1.4914916
2015-03-10
2016-12-08

Abstract

We present a rolled-up approach to form Ge microtubes and their array by rolling-up hybrid Ge/Cr nanomembranes, which is driven by the built-in stress in the deposited Cr layer. The study of Raman intensity as a function of the angle between the crystal-axis and the polarization-direction of the scattered light, i.e., polarized Raman measurement reveals that the strain state in Ge tube is uniaxial and tensile, and can reach a maximal value 1.0%. Both experimental observations and theoretical calculations suggest that the uniaxial-tensile strain residual in the rolled-up Ge tubes correlates with their tube diameters, which can be tuned by the thicknesses of the Cr layers deposited. Using the polarized Raman scattering spectroscopy, our study provides a comprehensive analysis of the strain state and evolution in self-rolled-up nano/micro-tubes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/3/1.4914916.html;jsessionid=SWJLrdagPbY5wveT4aXzk2Dq.x-aip-live-03?itemId=/content/aip/journal/adva/5/3/10.1063/1.4914916&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/3/10.1063/1.4914916&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/3/10.1063/1.4914916'
Right1,Right2,Right3,