Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.G. S. Huang, Y. F. Mei, D. J. Thurmer, E. Coric, and O. G. Schmidt, Lab Chip 9, 263 (2009).
2.G. S. Huang, V. A. Bolanos Quinones, F. Ding, S. Kiravittaya, Y. F. Mei, and O. G. Schmidt, ACS Nano 4, 3123 (2010).
3.C. C. Bof Bufon, J. D. Arias Espinoza, D. J. Thurmer, M. Bauer, Ch. Deneke, U. Zschieschang, H. Klauk, and O. G. Schmidt, Nano Lett. 11, 3727 (2011).
4.Y. F. Mei, A. A. Solovev, S. Sanchez, and O. G. Schmidt, Chem. Soc. Rev. 40, 2109 (2011).
5.V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, Physica E 6, 828 (2000).
6.O. G. Schmidt and K. Eberl, Nature 410, 168 (2001).
7.Y. F. Mei, G. S. Huang, A. A. Solovev, E. B. Ureña, I. Mönch, F. Ding, T. Reindl, K. Y. Fu, P. K. Chu, and O. G. Schmidt, Adv. Mater. 20, 4085 (2008).
8.M. H. Huang, C. Boone, M. Roberts, D. E. Savage, M. G. Lagally, N. Shaji, H. Qin, R. Blick, J. A. Nairn, and F. Liu, Adv. Mater. 17, 2860 (2005).
9.J. X. Li, J. Zhang, W. Gao, G. S. Huang, Z. F. Di, R. Liu, J. Wang, and Y. F. Mei, Adv. Mater. 25, 3715 (2012).
10.A. Malachias, Ch. Deneke, B. Krause, C. Mocuta, S. Kiravittaya, T. H. Metzger, and O. G. Schmidt, Phys. Rev. B 79, 035301 (2009).
11.R. Songmuang, N. Y. Jin-Phillipp, S. Mendach, and O. G. Schmidt, Appl. Phys. Lett. 88, 021913 (2006).
12.A. Bernardi, A. R. Goñi, M. I. Alonso, F. Alsina, H. Scheel, P. O. Vaccaro, and N. Saito, J. Appl. Phys. 99, 063512 (2006).
13.B. Krause, C. Mocuta, T. H. Metzger, Ch. Deneke, and O. G. Schmidt, Phys. Rev. Lett. 96, 165502 (2006).
14.Ch. Deneke, A. Malachias, S. Kiravittaya, M. Benyoucef, T. H. Metzger, and O. G. Schmidt, Appl. Phys. Lett. 96, 143101 (2010).
15.H. L. Zhen, G. S. Huang, S. Kiravittaya, S. L. Li, Ch. Deneke, D. J. Thurmer, Y. F. Mei, O. G. Schmidt, and W. Lu, Appl. Phys. Lett. 102, 041109 (2013).
16.J. A. Rogers, M. G. Lagally, and R. G. Nuzzo, Nature 477, 45 (2011).
17.G. S. Huang and Y. F. Mei, Adv. Mater. 24, 2517 (2012).
18.J. R. Jain, A. Hryciw, T. M. Baer, D. A. B. Miller, M. L. Brongersma, and R. T. Howe, Nat. Photon. 6, 398 (2012).
19.M. J. Suess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, Nat. Photon. 7, 466 (2013).
20.J. Welser, J. L. Hoyt, and J. F. Gibbons, IEEE Electron Dev. Lett. 15, 100 (1994).
21.Y. F. Mei, S. Kiravittaya, S. Harazim, and O. G. Schmidt, Mater. Sci. & Eng. R: Reports 70, 209 (2010).
22.J. F. Liu, X. C. Sun, D. Pan, X. X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, Opt. Exp. 15, 11272 (2007).
23.J. R. Sanchez-Perez, C. Boztug, F. Chen, F. F. Sudradjat, D. M. Paskiewicz, R. Jacobson, M. G. Lagally, and R. Paiella, Proc. Nat. Acad. Sci. U.S.A. 108, 18893 (2011).
24.M. El Kurdi, H. Bertin, E. Martincic, M. de Kersauson, G. Fishman, S. Sauvage, A. Bosseboeuf, and P. Boucaud, Appl. Phys. Lett. 96, 041909 (2010).
25.J. Greil, A. Lugstein, C. Zeiner, G. Strasser, and E. Bertagnolli, Nano Lett. 12, 6230 (2012).
26.A. Thorton and W. D. Hoffman, Thin Solid Films 171, 5 (1989).
27.I. S. Chun, A. Challa, B. Derickson, K. J. Hsia, and X. L. Li, Nano Lett. 10, 3927 (2010).
28.L. Zhang, E. Ruh, D. Grutzmacher, L. X. Dong, D. J. Bell, B. J. Nelson, and C. Schonenberger, Nano Lett. 6, 1311 (2006).
29.M. J. Suess, R. A. Minamisawa, R. Geiger, K. K. Bourdelle, H. Sigg, and R. Spolenak, Nano Lett. 14, 1249 (2014).
30.G. D. Sun, M. Zhang, Z. Y. Xue, Q. L. Guo, D. Chen, Z. Q. Mu, L. X. Dong, X. Wang, and Z. F. Di, Appl. Phys. Lett. 105, 193505 (2014).
31.K. Mizoguchi and S. Nakashima, J. Appl. Phys. 65, 2583 (1989).
32.Masashi Kurosawa, Taizoh Sadoh, and Masanobu Miyao, Appl. Phys. Lett. 98, 012110 (2011).
33.Z. Suo, E. Y. Ma, H. Gleskova, and S. Wagner, Appl. Phys. Lett. 74, 1177 (1999).
34.T. Miyatake and G. J. Pezzotti, J. Appl. Phys. 110, 093511 (2011).

Data & Media loading...


Article metrics loading...



We present a rolled-up approach to form Ge microtubes and their array by rolling-up hybrid Ge/Cr nanomembranes, which is driven by the built-in stress in the deposited Cr layer. The study of Raman intensity as a function of the angle between the crystal-axis and the polarization-direction of the scattered light, i.e., polarized Raman measurement reveals that the strain state in Ge tube is uniaxial and tensile, and can reach a maximal value 1.0%. Both experimental observations and theoretical calculations suggest that the uniaxial-tensile strain residual in the rolled-up Ge tubes correlates with their tube diameters, which can be tuned by the thicknesses of the Cr layers deposited. Using the polarized Raman scattering spectroscopy, our study provides a comprehensive analysis of the strain state and evolution in self-rolled-up nano/micro-tubes.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd