Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/3/10.1063/1.4915125
1.
1.S. L. Xiong, B. J. Xi, C. M. Wang, D. C. Xu, X. M. Feng, Z. C. Zhu, and Y. T. Qian, Adv. Funct. Mater. 17, 2728 (2007).
http://dx.doi.org/10.1002/adfm.200600891
2.
2.J. S. Hu, L. L. Ren, Y. G. Guo, H. P. Liang, A. M. Cao, L. J. Wan, and C. L. Bai, Angew. Chem. Int. Ed. 44, 1269 (2005).
http://dx.doi.org/10.1002/anie.200462057
3.
3.X. Wu, K. W. Li, and H. Wang, J. Alloy Compd. 487, 537 (2009).
http://dx.doi.org/10.1016/j.jallcom.2009.08.010
4.
4.M. Muruganandham and Y. Kusumoto, J. Phys. Chem. C 113, 16144 (2009).
http://dx.doi.org/10.1021/jp904253u
5.
5.A. Kudo and M. Sekizawa, Catal. Lett. 58, 241 (2000).
http://dx.doi.org/10.1023/A:1019067025917
6.
6.I. Tsuji and A. Kudo, J. Photochem. Photobiol. A 156, 249 (2003).
http://dx.doi.org/10.1016/S1010-6030(02)00433-1
7.
7.J. H. Bang, R. J. Helmich, and K. S. Suslick, Adv. Mater. 20, 2599 (2008).
http://dx.doi.org/10.1002/adma.200703188
8.
8.W. T. Chen and Y. J. Hsu, Langmuir 26, 5918 (2010).
http://dx.doi.org/10.1021/la904389y
9.
9.L. Obalová, M. Šihor, P. Praus, M. Reli, and K. Kočí, Catal. Today 230, 61 (2014).
http://dx.doi.org/10.1016/j.cattod.2013.09.047
10.
10.J. G. Yu, J. Zhang, and S. W. Liu, J. Phys. Chem. C 114, 13642 (2010).
http://dx.doi.org/10.1021/jp101816c
11.
11.C. W. Raubach, L. Polastro, M. M. Ferrer, A. Perrin, C. Perrin, A. R. Albuquerque, P. G. C. Buzolin, J. R. Sambrano, Y. B. V. de Santana, J. A. Varela, and E. Longo, J. Appl. Phys. 115, 213514 (2014).
http://dx.doi.org/10.1063/1.4880795
12.
12.J. H. Guo, S. J. Xiong, X. L. Wu, J. C. Shen, and P. K. Chu, Biomaterials 34, 9183 (2013).
http://dx.doi.org/10.1016/j.biomaterials.2013.08.023
13.
13.J. P. Alper, M. S. Kim, M. Vincent, B. Hsia, V. Radmilovic, C. Carraro, and R. Maboudian, J. Power Sources 230, 298 (2013).
http://dx.doi.org/10.1016/j.jpowsour.2012.12.085
14.
14.D. H. van Dorp, N. Hijnen, M. Di Vece, and J. J. Kelly, Angew. Chem. Int. Ed. 48, 6085 (2009).
http://dx.doi.org/10.1002/anie.200900796
15.
15.X. F. Zhou, Y. J. Liu, X. Li, Q. Z. Gao, X. T. Liu, and Y. P. Fang, Chem. Commun. 50, 1070 (2014).
http://dx.doi.org/10.1039/C3CC47790H
16.
16.G. Mishra, K. M. Parida, and S. K. Singh, RSC Adv. 4, 12918 (2014).
http://dx.doi.org/10.1039/c3ra46578k
17.
17.J. Q. Hu, Y. Bando, J. H. Zhan, and D. Golberg, Appl. Phys. Lett. 85, 2932 (2004).
http://dx.doi.org/10.1063/1.1801168
18.
18.R. B. Wu, J. J. Chen, G. Y. Yang, L. L. Wu, S. M. Zhou, J. R. Wang, and Y. Pan, J. Cryst. Growth 310, 3573 (2008).
http://dx.doi.org/10.1016/j.jcrysgro.2008.04.024
19.
19.J. Zhu, Z. Liu, X. L. Wu, L. L. Xu, W. C. Zhang, and P. K. Chu, Nanotechnology 18, 365603 (2007).
http://dx.doi.org/10.1088/0957-4484/18/36/365603
20.
20.J. Wang, P. Guo, Q. S. Guo, P. G. Jönssona, and Z. Zhao, CrystEngComm. 16, 4485 (2014).
http://dx.doi.org/10.1039/c4ce00107a
21.
21.See supplementary material at http://dx.doi.org/10.1063/1.4915125 for sample preparation details, XRD patterns, XPS spectra, and optical absorption spectrum.[Supplementary Material]
22.
22.Z. G. Yi, J. H. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, and R. L. Withers, Nat. Mater. 9, 559 (2010).
http://dx.doi.org/10.1038/nmat2780
23.
23.S. Kumar, M. Singhal, and J. K. Sharma, J. Mater. Sci.: Mater. Electron. 24, 3875 (2013).
http://dx.doi.org/10.1007/s10854-013-1332-x
24.
24.A. Kudo, I. Tsuji, and H. Kato, Chem. Commun. 17, 1958 (2002).
http://dx.doi.org/10.1039/b204259b
25.
25.A. Tiwaria, S. A. Khanb, and R. S Kherc, Adv. Appl. Sci. Res. 2, 105 (2011).
26.
26.X. L. Wu, J. Y. Fan, T. Qiu, G. G. Siu, and Paul K. Chu, Phys. Rev. Lett. 94, 026102 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.026102
27.
27.S. A. Gamboa, P. J. Sebastian, X. Mathew, H. Nguyen-Cong, and P. Chartier, Sol. Energy Mater. Sol. Cells 59, 115 (1999).
http://dx.doi.org/10.1016/S0927-0248(99)00036-7
28.
28.Y. Q. Lai, F. Y. Liu, J. Yang, B. Wang, J. Li, and Y. X. Liu, Appl. Phys. Express 4, 071201 (2011).
http://dx.doi.org/10.1143/APEX.4.071201
29.
29.L. Zheng, Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, and J. Zhu, Inorg. Chem. 48, 1819 (2009).
http://dx.doi.org/10.1021/ic802293p
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/3/10.1063/1.4915125
Loading
/content/aip/journal/adva/5/3/10.1063/1.4915125
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/3/10.1063/1.4915125
2015-03-12
2016-09-29

Abstract

3C-SiC/n-type ZnS heterostructured nanospheres synthesized hydrothermally deliver enhanced photocatalytic performance under visible light excitation. The heterostructured catalysts consisting of 3C-SiC and ZnS nanocrystals with a mean size being less than 5 nm exhibit extended light absorption to the visible range. The proper band structure of the 3C-SiC and ZnS nanocrystals and intrinsic electric field induced by the heterojunction promote separation of photoexcited electrons and holes in the ZnS and 3C-SiC nanocrystals resulting in the increased photocatalytic efficiency. The associated mechanism is studied and proposed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/3/1.4915125.html;jsessionid=UAmZbwx8sdWjjvvVOtwZ5oow.x-aip-live-03?itemId=/content/aip/journal/adva/5/3/10.1063/1.4915125&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/3/10.1063/1.4915125&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/3/10.1063/1.4915125'
Right1,Right2,Right3,