Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.D. J. Prockop and K. I. Kivirikko, Annu. Rev. Biochem. 64, 403 (1995).
2.M. D. Shoulders and R. T. Raines, Annu. Rev. Biochem. 78, 929 (2009).
3.A. E. Aliev, S. Bhandal, and D. Courtier-Murias, J. Phys. Chem. A 113, 10858 (2009);
3.D. F. DeTar and N. P. Luthra, J. Am. Chem. Soc. 99, 1232 (1977);
3.B. K. Ho, E. A. Coutsias, C. Seok, and K. A. Dill, Protein Sci. 14, 1011 (2005);
3.V. Madison, Biopolymers 16, 2671 (1977).
4.R. Improta, C. Benzi, and V. Barone, J. Am. Chem. Soc. 123, 12568 (2001).
5.Y. K. Kang, J. Phys. Chem. B 110, 21338 (2006).
6.J. Bella, M. Eaton, B. Brodsky, and H. M. Berman, Science 266, 75 (1994).
7.V. Nagarajan, S. Kamitori, and K. Okuyama, J. Biochem. (Tokyo) 125, 310 (1999).
8.R. Z. Kramer, L. Vitagliano, J. Bella, R. Berisio, L. Mazzarella, B. Brodsky, A. Zagari, and H. M. Berman, J. Mol. Biol. 280, 623 (1998);
8.L. Vitagliano, R. Berisio, L. Mazzarella, and A. Zagari, Biopolymers 58, 459 (2001).;2-V
9.L. Vitagliano, R. Berisio, A. Mastrangelo, L. Mazzarella, and A. Zagari, Protein Sci. 10, 2627 (2001).
10.M. L. DeRider, S. J. Wilkens, M. J. Waddell, L. E. Bretscher, F. Weinhold, R. T. Raines, and J. L. Markley, J. Am. Chem. Soc. 124, 2497 (2002).
11.R. S. Erdmann and H. Wennemers, Angew. Chem. Int. Ed. 50, 6835 (2011).
12.K. Okuyama, T. Morimoto, H. Narita, T. Kawaguchi, K. Mizuno, H. P. Bachinger, G. H. Wu, and K. Noguchi, Acta Cryst. D 66, 88 (2010).
13.S. D. Mooney, P. A. Kollman, and T. E. Klein, Biopolymers 64, 63 (2002).
14.S. Park, R. J. Radmer, T. E. Klein, and V. S. Pande, J. Comput. Chem. 26, 1612 (2005).
15.J. M. Wang, P. Cieplak, and P. A. Kollman, J. Comput. Chem. 21, 1049 (2000).;2-F
16.A. E. Aliev, M. Kulke, H. S. Khaneja, V. Chudasama, T. D. Sheppard, and R. M. Lanigan, Proteins 82, 195 (2014).
17.A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus, J. Phys. Chem. B 102, 3586 (1998).
18.D. Wu, AIP Adv. 3, 032141 (2013).
19.J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, and K. Schulten, J. Comput. Chem. 26, 1781 (2005).
20.A. D. Mackerell, M. Feig, and C. L. Brooks, J. Comput. Chem. 25, 1400 (2004).
21.W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graph. 14, 33 (1996).
22.E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin, J. Comput. Chem. 25, 1605 (2004).
23.D. Wu, J. Chem. Phys. 128, 224105 (2008).
24.D. Wu, J. Chem. Phys. 133, 244116 (2010).
25.Y. K. Kang, J. Mol. Struct. (THEOCHEM) 675, 37 (2004).
26.Y. K. Kang, J. Phys. Chem. B 111, 10550 (2007).
27.R. Improta, F. Mele, O. Crescenzi, C. Benzi, and V. Barone, J. Am. Chem. Soc. 124, 7857 (2002).
28.L. E. Bretscher, C. L. Jenkins, K. M. Taylor, M. L. DeRider, and R. T. Raines, J. Am. Chem. Soc. 123, 777 (2001);
28.C. L. Jenkins, G. Lin, J. Duo, D. Rapolu, I. A. Guzei, R. T. Raines, and G. R. Krow, J. Org. Chem. 69, 8565 (2004).
29.R. S. Erdmann and H. Wennemers, J. Am. Chem. Soc. 134, 17117 (2012).
30.J. Bella, B. Brodsky, and H. M. Berman, Structure 3, 893 (1995);
30.K. Kawahara, Y. Nishi, S. Nakamura, S. Uchiyama, Y. Nishiuchi, T. Nakazawa, T. Ohkubo, and Y. Kobayashi, Biochemistry 44, 15812 (2005).
31.M. Schumacher, K. Mizuno, and H. P. Bachinger, J. Biol. Chem. 280, 20397 (2005).

Data & Media loading...


Article metrics loading...



Collagen is made of triple helices rich in proline residues, and hence is influenced by the conformational motions of prolines. Because the backbone motions of prolines are restricted by the helical structures, the only side chain motion—proline puckering—becomes an influential factor that may affect the stability of collagen structures. In molecular simulations, a proper proline puckering population is desired so to yield valid results of the collagen properties. Here we design the proline puckering parameters in order to yield suitable proline puckering populations as demonstrated in the experimental results. We test these parameters in collagen and the proline dipeptide simulations. Compared with the results of the PDB and the quantum calculations, we propose the proline puckering parameters for the selected collagen model simulations.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd