Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/3/10.1063/1.4916043
1.
1.M. S. Moayeri and G. R. Zendehboodi, “Effect of elastic property of the wall on flow characteristics through arterial stenosis,” J. Biomechanics 36, 525535 (2003).
http://dx.doi.org/10.1016/S0021-9290(02)00421-9
2.
2.D. F. Young, “Effect of a time-dependent stenosis on flow through a tube,” J. Eng. Ind. 90, 248-254 (1968).
http://dx.doi.org/10.1115/1.3604621
3.
3.S. Cavalcanti, “Hemodynamics of an artery with mild stenosis,” J. Biomechanics 28, 387399 (1995).
http://dx.doi.org/10.1016/0021-9290(94)00084-H
4.
4.J. Lee and Y. Fung, “Flow in locally constricted tube at low Reynolds number,” J. Appl. Mech 379-16 (1970).
5.
5.D. A. Morgan, “An integral method for the analysis of flow in arterial stenosis,” Bull Math. Biol. 36, 39-53 (1974).
6.
6.D. F. Young, N. R. Cholvin, L. K. Richard, and A. C. Roth, “Hemodynamics of arterial stenosis at elevated flow rate,” Circulation Res. 41, 99-107 (1977).
http://dx.doi.org/10.1161/01.RES.41.1.99
7.
7.W. Youngchareon and D. F. Young, “Initiation of turbulence in models of arterial stenosis,” J. Biomechanics 12, 185-196 (1979).
http://dx.doi.org/10.1016/0021-9290(79)90141-6
8.
8.J. Doffin and F. Chagneau, “Oscillating flow between a clot model and a stenosis,” J. Biomechanics 14, 143148 (1981).
http://dx.doi.org/10.1016/0021-9290(81)90020-8
9.
9.R. J. Liou, M. E. Clark, J. M. Robersto, and L. C. Cheng, “Three-dimensional simulation of steady past a partial stenosis,” J. Biomechanics 14, 325-338 (1981).
http://dx.doi.org/10.1016/0021-9290(81)90042-7
10.
10.A. Pollard, “A contribution on the effects of inlet conditions when modeling stenosis using sudden expansions,” J. Biomechanics 12, 185-196 (1981).
11.
11.S. Chakravarty, A. Datta, and P. K. Mandal, “Effect of body acceleration on unsteady flow of blood time-dependent arterial stenosis,” J. Comput. Appl. Math. 24, 57-74 (1996).
12.
12.S. Chakravarty, P. K. Mandal, and A. Mandal, “Mathematical model of pulsatile blood flow in a distensible aortic bifurcation subject to body acceleration,” Int. J. Eng. Sci. 38, 215-238 (2000).
http://dx.doi.org/10.1016/S0020-7225(99)00022-1
13.
13.S. Chakravarty, P. K. Mandal, and Sarifuddin, “Effect of surface irregularities on unsteady pulsatile flow in a compliant artery,” Int. J. Non-Linear Mech. 40, 12681281 (2005).
http://dx.doi.org/10.1016/j.ijnonlinmec.2005.06.003
14.
14.F. Yilmaz and M. Y. Gundogdu, “A critical review on blood flow in large arteries; relevance to blood rheology , viscosity models, and physiologic conditions,” Korea-Australia Rheo. J. 20, 197-211 (2008).
15.
15.I. Abdullah and N. Amin, “A micropolar fluid model of blood flow through a tapered artery with a stenosis,” Math. Meth. Appl. Sci. 33, 19101923 (2010).
16.
16.I. Abdullah, N. Amin, and T. Hayat, “Magnetohydrodynamic effects on blood flow through an irregular stenosis,” Int. J. Num. Meth. Fluid. 67, 16241636 (2011).
http://dx.doi.org/10.1002/fld.2436
17.
17.C. Fisher and J.S. Rossmann, “Effect of Non-Newtonian Behavior on Hemodynamics of Cerebral Aneurysms,” J. Biomechanical Eng. 131, 4-13 (2009).
http://dx.doi.org/10.1115/1.3148470
18.
18.F.J. Gijsen, E. Allanic, F.N. Van de Vosse, and J.D. Janssen, “The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 900 curved tube,” J. Biomechanics 32, 601 (1999).
http://dx.doi.org/10.1016/S0021-9290(99)00015-9
19.
19.J. Chen, X.Y. Lu, and W. Wang, “Non-Newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses,” J. Biomechanics 39, 1983-1995 (2006).
http://dx.doi.org/10.1016/j.jbiomech.2005.06.012
20.
20.T. Bodnar, A. Sequeira, and M. Prosi, “On the shear-thinning and viscoelastic effects of blood flow under various flow rates,” Appl. Math. Comput. 217, 5055-5067 (2011).
http://dx.doi.org/10.1016/j.amc.2010.07.054
21.
21.R. Revellin, F. Rousset, D. Baud, and J. Bonjour, “Extension of Murray’s law using a non-Newtonian model of blood flow,” Theo. Bio. Med. Model. 6, 9 Pages (2009).
http://dx.doi.org/10.1186/1742-4682-6-9
22.
22.J. Vimmr and A. Jonasova, “On the modeling of steady generalized Newtonian flows in a 3D coronary bypass,” J. Engineering Mechanics 15, 10-11 (2008).
23.
23.Y.H. Kim, P.J. VandeVord, and J.S. Lee, “Multiphase non-Newtonian effects on pulsatile hemodynamic in a coronary artery,” Int. J. Num. Meth. Fluids 58, 803-825 (2008).
http://dx.doi.org/10.1002/fld.1768
24.
24.P.K. Mandal, “An unsteady analysis of non-Newtonian blood through tapered arteries with a stenosis,” Int. J. Non-Linear Mech. 40, 151164 (2005).
http://dx.doi.org/10.1016/j.ijnonlinmec.2004.07.007
25.
25.Md.A. Ikbal, S. Chakravarty, K.L.K. Wong, J. Mazumdar, and P. K. Mandal, “Unsteady response of non-Newtonian blood flow through a stenosed artery in a magnetic field,” J. Comput. Appl. Math. 230, 243259 (2009).
http://dx.doi.org/10.1016/j.cam.2008.11.010
26.
26.P.K. Mandal, S. Chakravarty, A. Mandal, and N. Amin, “Effect of body acceleration on unsteady pulsatile flow of non-Newtonian fluid through a stenosed artery,” Appl. Math. Comput. 189, 766779 (2007).
http://dx.doi.org/10.1016/j.amc.2006.11.139
27.
27.Kh. S. Mekheimer and M. A. Elkot, “Mathematical modeling of unsteady flow of a Sisko fluid through an anisotropically tapered elastic arteries with time –variant overlapping stenosis,” Appl. Math. Model. 36, 5393-5407 (2012).
http://dx.doi.org/10.1016/j.apm.2011.12.051
28.
28.D.S. Sankar and U. Lee, “Two-fluid non-linear model for flowin catheterized blood vessels,” Int. J. Non-Linear Mech. 43, 622-631 (2008).
http://dx.doi.org/10.1016/j.ijnonlinmec.2008.02.007
29.
29.A. Valencia, A. Zarate, M. Galvez, and L. Badilla, “Non-Newtonian blood flow dynamics in a right internal carotid artery with a saccular aneurysm,” Int. J. Numer. Meth. Fluid 50, 751-764 (2006).
http://dx.doi.org/10.1002/fld.1078
30.
30.B.M. Johnston, P. R. Johnston, S. Corney, and D. Kilpatrick, “Non-Newtonian blood flow in human right coronary arteries: steady state simulations,” J. Biomech. 37, 709-720 (2004).
http://dx.doi.org/10.1016/j.jbiomech.2003.09.016
31.
31.J.R. Buchanan, C. Kleinstreuer, and J.K. Comer, “Rheological effects on pulsatile hemodynamics in a stenosed tube,” Comput. Fluid 29, 695-724 (2000).
http://dx.doi.org/10.1016/S0045-7930(99)00019-5
32.
32.N. Mustapha, N. Amin, P.K. Mandal, I. Abdullah, and T. Hayat, “Numerical simulation of generalized Newtonian blood flow past a multiple of irregular arterial stenosis,” Num. Meth. Partial Differential Eqs. 27, 960-981 (2009).
http://dx.doi.org/10.1002/num.20563
33.
33.N. Ali, A. Zaman, and M. Sajid, “Unsteady blood flow through a tapered stenotic artery using Sisko model,” Computers & Fluids 101, 42-49 (2014).
http://dx.doi.org/10.1016/j.compfluid.2014.05.030
34.
34.N.S. Akbar and S. Nadeem, “Carreau fluid model for blood flow through a tapered artery with a stenosis,” A. Shams Eng. J. 5, 1307-1316 (2014).
http://dx.doi.org/10.1016/j.asej.2014.05.010
35.
35.T.J. Pedley, The fluid mechanics of large blood vessels (Cambridge University Press, London, 1980).
36.
36.A.C. Burton, Physiology and Biophysics of the Circulation, Introductory Text (Year Book Medical Publisher Chicago, 1966).
37.
37.S.C. Ling and H. B. Atabek, “A nonlinear analysis of pulsatile flow in arteries,” J. Fluid Mech. 55, 493511 (1972).
http://dx.doi.org/10.1017/S0022112072001971
38.
38.C.E. Huckaba and A. W. Hahn, “A generalised approach to the modeling of arterial blood flow,” Bull. Math. Biophys. 30, 645662 (1968).
http://dx.doi.org/10.1007/BF02476681
39.
39.D.A. McDonald, Blood Flow in Arteries (Edward, 1974).
40.
40.W.R. Milnor, Hemodynamics (Williams and Williams, Baltimore, 1982).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/3/10.1063/1.4916043
Loading
/content/aip/journal/adva/5/3/10.1063/1.4916043
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/3/10.1063/1.4916043
2015-03-27
2016-12-06

Abstract

A two-dimensional model is used to analyze the unsteady pulsatile flow of blood through a tapered artery with stenosis. The rheology of the flowing blood is captured by the constitutive equation of Carreau model. The geometry of the time-variant stenosis has been used to carry out the present analysis. The flow equations are set up under the assumption that the lumen radius is sufficiently smaller than the wavelength of the pulsatile pressure wave. A radial coordinate transformation is employed to immobilize the effect of the vessel wall. The resulting partial differential equations along with the boundary and initial conditions are solved using finite difference method. The dimensionless radial and axial velocity, volumetric flow rate, resistance impedance and wall shear stress are analyzed for normal and diseased artery with particular focus on variation of these quantities with non-Newtonian parameters.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/3/1.4916043.html;jsessionid=CUQC3yi-Wwj1ctWcP8XdkTlr.x-aip-live-03?itemId=/content/aip/journal/adva/5/3/10.1063/1.4916043&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/3/10.1063/1.4916043&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/3/10.1063/1.4916043'
Right1,Right2,Right3,