Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Appl. Phys. Lett. 67, 1868 (1995).
2.O. Laboutin, Y. Cao, W. Johnson, R. Wang, G. Li, D. Jena, and H. Xing, Appl. Phys. Lett. 100, 121909 (2012).
3.T. Hasan, R. Kaysir, S. Islam, A. G. Bhuiyan, R. Islam, A. Hashimoto, and A. Yamamoto, Phys. Status Solidi C 7(7–8), 1997 (2010).
4.S. Nakamura, Semicond. Sci. Technol. 14, R27R40 (1999).
5.L. Sang, M. Liao, Y. Koide, and M. Sumiya, Appl. Phys. Lett. 99, 031115 (2011).
6.B. Monemar, J. Mater. Sci.: Mater. Electron. 10, 227 (1999).
7.T. Böttcher, S. Einfeldt, V. Kirchner, S. Figge, H. Heinke, D. Hommel, H. Selke, and P. L. Ryder, Appl. Phys. Lett. 73, 3232 (1998).
8.M. G. Cheong, E. K. Suh, H. J. Lee, and M. Dawson, Semicond. Sci. Technol. 17, 446 (2002).
9.I. H. Kim, H. S. Park, Y. J. Park, and T. Kim, Appl. Phys. Lett. 73, 1634 (1998).
10.S. Mahanty, M. Hao, T. Sugahara, R. S. Q. Fareed, Y. Morishima, Y. Naoi, T. Wang, and S. Sakai, Mater. Lett. 41, 67 (1999).
11.X. A. Cao, K. Topol, F. S. Sandvik, J. Teetsov, P. M. Sandvik, S. F. LeBoeuf, A. Ebong, J. Kretchmer, E. B. Stokes, S. Arthur, A. E. Keloyeros, and D. Walker, Proc. SPIE 4776, 105 (2002).
12.J. Kim, Y. H. Cho, D. S. Ko, X. S. Li, J. Y. Won, E. Lee, S. H. Park, J. Y. Kim, and S. Kim, Optics Express 22, A857 (2014).
13.K. Yamashita, T. Sugiyama, M. Iwai, Y. Honda, T. Yoshino, and H. Amano, Proc. SPIE 9003 , doi:10.1117/12.2038764 (2014).
14.C. L. Chao, R. Xuan, H. H. Yen, C. H. Chiu, Y. H. Fang, Z. Y. Li, B. C. Chen, C. C. Lin, C. H. Chiu, Y. D. Guo, H. C. Kuo, J. F. Chen, and S. J. Cheng, IEEE Photon. Technol. Lett. 23(12), 798 (2011).
15.Y. J. Lee, C. H. Chen, and C. J. Lee, IEEE Photon. Technol. Lett. 22(20), 1506 (2010).
16.I. Ho and G. B. Stringfellow, Appl. Phys. Lett. 69, 2701 (1996).
17.L. Görgensa, O. Ambacher, M. Stutzmann, C. Miskys, F. Scholz, and J. Off, Appl. Phys. Lett. 76, 577 (2000).
18.J. H. Werner and H. H. Güttler, J. Appl. Phys. 69, 1522 (1991).
19.N. A. El-Masry, E. L. Piner, S. X. Liu, and S. M. Bedair, Appl. Phys. Lett. 72, 40 (1998).
20.R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, Appl. Phys. Lett. 70, 1089 (1997).
21.V. N. Jmerik, A. M. Mizerov, T. V. Shubina, M. Yagovkina, V. B. Listoshin, A. A. Sitnikova, S. V. Ivanov, M. H. Kim, M. Koike, and B. J. Kim, Journal of Crystal Growth 301–302, 469 (2007).
22.H. Wang, D. S. Jiang, U. Jahn, J. J. Zhu, D. G. Zhao, Z. S. Liu, S. M. Zhang, Y. X. Qiu, and H. Yang, Physica B 405, 4668 (2010).
23.Y. L. Chang, J. L. Wang, F. Li, and Z. Mi, Appl. Phys. Lett. 96, 013106 (2010).
24.T. Kehagias, G. P. Dimitrakopulos, P. Becker, J. Kioseoglou, F. Furtmayr, T. Koukoula, I. Hausler, A. Chernikov, S. Chatterjee, T. Karakostas, H. M. Solowan, U. T. Schwarz, M. Eickhoff, and P. Komninou, Nanotechnology 24, 435702 (2013).
25.S. E. Wu, S. Dhara, T. H. Hsueh, Y. F. Lai, C. Y. Wanga, and C. P. Liu, J. Raman Spectrosc. 40, 2044 (2009).
26.A. G. Kontos, Y. S. Raptis, N. T. Pelekanos, A. Georgakilas, E. Bellet-Amalric, and D. Jalabert, Physical Review B 72, 155336 (2005).
27.B. Roul, M. K. Rajpalke, T. N. Bhat, M. Kumar, A. T. Kalghatgi, and S. B. Krupanidhi, J. Crystal Growth 354, 208 (2012).
28.B. Roul, M. Kumar, M. K. Rajpalke, T. N. Bhat, N. Sinha, A. T. Kalghatgi, and S. B. Krupanidhi, J. Appl. Phys. 110, 064502 (2011).
29.H. Morkoç, Handbook of Nitride Semiconductors and Devices (Wiley-VCH, Berlin, 2008).
30.M. Shur, Physics of Semiconductor Devices (Prentice-Hall, Engelwood Cliffs, 1990).
31.L. Wang, M. I. Nathan, T. Lim, M. A. Khan, and Q. Chen, Appl. Phys. Lett. 68, 1267 (1996).
32.B. Roul, T. N. Bhat, M. Kumar, M. K. Rajpalke, N. Sinha, A. T. Kalghatgi, and S. B. Krupanidhi, Solid State Communications 151, 1420 (2011).
33.K. Wang, C. Lian, N. Su, D. Jena, and J. Timler, Appl. Phys. Lett. 91, 232117 (2007).
34.N. C. Chen, P. H. Chang, Y. N. Wang, H. C. Peng, W. C. Lien, C. F. Shih, Chin-An Chang, and G. M. Wu, Appl. Phys. Lett. 87, 212111 (2005).
35.H. C. Casey, Jr., J. Muth, S. Krishnankutty, and J. M. Zavada, Appl. Phys. Lett. 68, 2867 (1996).
36.R. T. Tung, Phys. Rev. B 45, 13509 (1992).
37.A. Bolognesi, A. D. I. Carlo, P. Lugli, T. Kampen, and D. R. T. Zahn, J. Phys. Condens. Matter. 152, 719 (2003).
38.T. U. Kampen, S. Park, and D. R. T. Zahn, Appl. Surf. Sci. 190, 461 (2002).
39.P. Chattopadyay and A. N. Daw, Solid State Electron. 29, 555 (1986).
40.A. E. Rakhshani, Y. Makdisi, X. Mathew, and N. R. Mathews, Phys. Status Solidi A 168, 177 (1998).;2-9
41.K. Ejderha, A. Zengin, I. Orak, B. Tasyurek, T. Kilinc, and A. Turut, Mater. Sci. Semicond. Process. 14, 5 (2011).
42.K. Çınar, N. Yıldırım, C. Coşkun, and A. Turut, J. Appl. Phy. 106, 073717 (2009).
43.J. P. Sullivan, R. T. Tung, M. R. Pinto, and W. R. Graham, J. Appl. Phy. 70, 7403 (1991).
44.R. T. Tung, J. Appl. Phys. 88, 7366 (2000).
45.M. H. Mamor, J. Phys.: Condens. Matter. 21, 335802 (2009).
46.A. F. Özdemir, A Turut, and A. Kökce, Semicond. Sci. Technol. 21, 298 (2006).
47.K. Ejderha, S. Duman, C. Nuhoglu, F. Urhan, and A. Turut, J. Appl. Phys. 116, 234503 (2014).
48.L. Mohan, G. Chandan, S. Mukundan, B. Roul, and S. B. Krupanidhi, J. Appl. Phys. 116, 234508 (2014).

Data & Media loading...


Article metrics loading...



We have grown InGaN/GaN heterostructures using plasma-assisted molecular beam epitaxy and studied the temperature dependent electrical transport characteristics. The barrier height () and the ideally factor () estimated using thermionic emission model were found to be temperature dependent. The conventional Richardson plot of (/ 2) versus showed two temperature regions (region-I: 400–500 K and region-II: 200–350 K) and it provides Richardson constants ( ) which are much lower than the theoretical value of GaN. The observed variation in the barrier height and the presence of two temperature regions were attributed to spatial barrier inhomogeneities at the heterojunction interface and was explained by assuming a double Gaussian distribution of barrier heights with mean barrier height values 1.61 and 1.21 eV with standard deviation ( 2) of 0.044 and 0.022 V, respectively. The modified Richardson plot of (/ 2) − ( 2 2/2 2 2) versus for two temperature regions gave mean barrier height values as 1.61 eV and 1.22 eV with Richardson constants ( ) values 25.5 Acm−2K−2 and 43.9 Acm−2K−2, respectively, which are very close to the theoretical value. The observed barrier height inhomogeneities were interpreted on the basis of the existence of a double Gaussian distribution of barrier heights at the interface.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd