Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/3/10.1063/1.4916264
1.
1.S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Appl. Phys. Lett. 67, 1868 (1995).
http://dx.doi.org/10.1063/1.114359
2.
2.O. Laboutin, Y. Cao, W. Johnson, R. Wang, G. Li, D. Jena, and H. Xing, Appl. Phys. Lett. 100, 121909 (2012).
http://dx.doi.org/10.1063/1.3697415
3.
3.T. Hasan, R. Kaysir, S. Islam, A. G. Bhuiyan, R. Islam, A. Hashimoto, and A. Yamamoto, Phys. Status Solidi C 7(7–8), 1997 (2010).
http://dx.doi.org/10.1002/pssc.200983608
4.
4.S. Nakamura, Semicond. Sci. Technol. 14, R27R40 (1999).
http://dx.doi.org/10.1088/0268-1242/14/6/201
5.
5.L. Sang, M. Liao, Y. Koide, and M. Sumiya, Appl. Phys. Lett. 99, 031115 (2011).
http://dx.doi.org/10.1063/1.3615291
6.
6.B. Monemar, J. Mater. Sci.: Mater. Electron. 10, 227 (1999).
http://dx.doi.org/10.1023/A:1008991414520
7.
7.T. Böttcher, S. Einfeldt, V. Kirchner, S. Figge, H. Heinke, D. Hommel, H. Selke, and P. L. Ryder, Appl. Phys. Lett. 73, 3232 (1998).
http://dx.doi.org/10.1063/1.122728
8.
8.M. G. Cheong, E. K. Suh, H. J. Lee, and M. Dawson, Semicond. Sci. Technol. 17, 446 (2002).
http://dx.doi.org/10.1088/0268-1242/17/5/307
9.
9.I. H. Kim, H. S. Park, Y. J. Park, and T. Kim, Appl. Phys. Lett. 73, 1634 (1998).
http://dx.doi.org/10.1063/1.122229
10.
10.S. Mahanty, M. Hao, T. Sugahara, R. S. Q. Fareed, Y. Morishima, Y. Naoi, T. Wang, and S. Sakai, Mater. Lett. 41, 67 (1999).
http://dx.doi.org/10.1016/S0167-577X(99)00105-6
11.
11.X. A. Cao, K. Topol, F. S. Sandvik, J. Teetsov, P. M. Sandvik, S. F. LeBoeuf, A. Ebong, J. Kretchmer, E. B. Stokes, S. Arthur, A. E. Keloyeros, and D. Walker, Proc. SPIE 4776, 105 (2002).
http://dx.doi.org/10.1117/12.452581
12.
12.J. Kim, Y. H. Cho, D. S. Ko, X. S. Li, J. Y. Won, E. Lee, S. H. Park, J. Y. Kim, and S. Kim, Optics Express 22, A857 (2014).
http://dx.doi.org/10.1364/OE.22.00A857
13.
13.K. Yamashita, T. Sugiyama, M. Iwai, Y. Honda, T. Yoshino, and H. Amano, Proc. SPIE 9003 , doi:10.1117/12.2038764 (2014).
http://dx.doi.org/10.1117/12.2038764
14.
14.C. L. Chao, R. Xuan, H. H. Yen, C. H. Chiu, Y. H. Fang, Z. Y. Li, B. C. Chen, C. C. Lin, C. H. Chiu, Y. D. Guo, H. C. Kuo, J. F. Chen, and S. J. Cheng, IEEE Photon. Technol. Lett. 23(12), 798 (2011).
http://dx.doi.org/10.1109/LPT.2011.2134081
15.
15.Y. J. Lee, C. H. Chen, and C. J. Lee, IEEE Photon. Technol. Lett. 22(20), 1506 (2010).
http://dx.doi.org/10.1109/LPT.2010.2065221
16.
16.I. Ho and G. B. Stringfellow, Appl. Phys. Lett. 69, 2701 (1996).
http://dx.doi.org/10.1063/1.117683
17.
17.L. Görgensa, O. Ambacher, M. Stutzmann, C. Miskys, F. Scholz, and J. Off, Appl. Phys. Lett. 76, 577 (2000).
http://dx.doi.org/10.1063/1.125822
18.
18.J. H. Werner and H. H. Güttler, J. Appl. Phys. 69, 1522 (1991).
http://dx.doi.org/10.1063/1.347243
19.
19.N. A. El-Masry, E. L. Piner, S. X. Liu, and S. M. Bedair, Appl. Phys. Lett. 72, 40 (1998).
http://dx.doi.org/10.1063/1.120639
20.
20.R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, Appl. Phys. Lett. 70, 1089 (1997).
http://dx.doi.org/10.1063/1.118493
21.
21.V. N. Jmerik, A. M. Mizerov, T. V. Shubina, M. Yagovkina, V. B. Listoshin, A. A. Sitnikova, S. V. Ivanov, M. H. Kim, M. Koike, and B. J. Kim, Journal of Crystal Growth 301–302, 469 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2006.11.158
22.
22.H. Wang, D. S. Jiang, U. Jahn, J. J. Zhu, D. G. Zhao, Z. S. Liu, S. M. Zhang, Y. X. Qiu, and H. Yang, Physica B 405, 4668 (2010).
http://dx.doi.org/10.1016/j.physb.2010.08.058
23.
23.Y. L. Chang, J. L. Wang, F. Li, and Z. Mi, Appl. Phys. Lett. 96, 013106 (2010).
http://dx.doi.org/10.1063/1.3284660
24.
24.T. Kehagias, G. P. Dimitrakopulos, P. Becker, J. Kioseoglou, F. Furtmayr, T. Koukoula, I. Hausler, A. Chernikov, S. Chatterjee, T. Karakostas, H. M. Solowan, U. T. Schwarz, M. Eickhoff, and P. Komninou, Nanotechnology 24, 435702 (2013).
http://dx.doi.org/10.1088/0957-4484/24/43/435702
25.
25.S. E. Wu, S. Dhara, T. H. Hsueh, Y. F. Lai, C. Y. Wanga, and C. P. Liu, J. Raman Spectrosc. 40, 2044 (2009).
http://dx.doi.org/10.1002/jrs.2369
26.
26.A. G. Kontos, Y. S. Raptis, N. T. Pelekanos, A. Georgakilas, E. Bellet-Amalric, and D. Jalabert, Physical Review B 72, 155336 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.155336
27.
27.B. Roul, M. K. Rajpalke, T. N. Bhat, M. Kumar, A. T. Kalghatgi, and S. B. Krupanidhi, J. Crystal Growth 354, 208 (2012).
http://dx.doi.org/10.1016/j.jcrysgro.2012.06.021
28.
28.B. Roul, M. Kumar, M. K. Rajpalke, T. N. Bhat, N. Sinha, A. T. Kalghatgi, and S. B. Krupanidhi, J. Appl. Phys. 110, 064502 (2011).
http://dx.doi.org/10.1063/1.3634116
29.
29.H. Morkoç, Handbook of Nitride Semiconductors and Devices (Wiley-VCH, Berlin, 2008).
30.
30.M. Shur, Physics of Semiconductor Devices (Prentice-Hall, Engelwood Cliffs, 1990).
31.
31.L. Wang, M. I. Nathan, T. Lim, M. A. Khan, and Q. Chen, Appl. Phys. Lett. 68, 1267 (1996).
http://dx.doi.org/10.1063/1.115948
32.
32.B. Roul, T. N. Bhat, M. Kumar, M. K. Rajpalke, N. Sinha, A. T. Kalghatgi, and S. B. Krupanidhi, Solid State Communications 151, 1420 (2011).
http://dx.doi.org/10.1016/j.ssc.2011.07.008
33.
33.K. Wang, C. Lian, N. Su, D. Jena, and J. Timler, Appl. Phys. Lett. 91, 232117 (2007).
http://dx.doi.org/10.1063/1.2821378
34.
34.N. C. Chen, P. H. Chang, Y. N. Wang, H. C. Peng, W. C. Lien, C. F. Shih, Chin-An Chang, and G. M. Wu, Appl. Phys. Lett. 87, 212111 (2005).
http://dx.doi.org/10.1063/1.2132538
35.
35.H. C. Casey, Jr., J. Muth, S. Krishnankutty, and J. M. Zavada, Appl. Phys. Lett. 68, 2867 (1996).
http://dx.doi.org/10.1063/1.116351
36.
36.R. T. Tung, Phys. Rev. B 45, 13509 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.13509
37.
37.A. Bolognesi, A. D. I. Carlo, P. Lugli, T. Kampen, and D. R. T. Zahn, J. Phys. Condens. Matter. 152, 719 (2003).
38.
38.T. U. Kampen, S. Park, and D. R. T. Zahn, Appl. Surf. Sci. 190, 461 (2002).
http://dx.doi.org/10.1016/S0169-4332(01)00919-9
39.
39.P. Chattopadyay and A. N. Daw, Solid State Electron. 29, 555 (1986).
http://dx.doi.org/10.1016/0038-1101(86)90078-X
40.
40.A. E. Rakhshani, Y. Makdisi, X. Mathew, and N. R. Mathews, Phys. Status Solidi A 168, 177 (1998).
http://dx.doi.org/10.1002/(SICI)1521-396X(199807)168:1%3C177::AID-PSSA177%3E3.0.CO;2-9
41.
41.K. Ejderha, A. Zengin, I. Orak, B. Tasyurek, T. Kilinc, and A. Turut, Mater. Sci. Semicond. Process. 14, 5 (2011).
http://dx.doi.org/10.1016/j.mssp.2010.12.010
42.
42.K. Çınar, N. Yıldırım, C. Coşkun, and A. Turut, J. Appl. Phy. 106, 073717 (2009).
http://dx.doi.org/10.1063/1.3236647
43.
43.J. P. Sullivan, R. T. Tung, M. R. Pinto, and W. R. Graham, J. Appl. Phy. 70, 7403 (1991).
http://dx.doi.org/10.1063/1.349737
44.
44.R. T. Tung, J. Appl. Phys. 88, 7366 (2000).
http://dx.doi.org/10.1063/1.1324996
45.
45.M. H. Mamor, J. Phys.: Condens. Matter. 21, 335802 (2009).
http://dx.doi.org/10.1088/0953-8984/21/33/335802
46.
46.A. F. Özdemir, A Turut, and A. Kökce, Semicond. Sci. Technol. 21, 298 (2006).
http://dx.doi.org/10.1088/0268-1242/21/3/016
47.
47.K. Ejderha, S. Duman, C. Nuhoglu, F. Urhan, and A. Turut, J. Appl. Phys. 116, 234503 (2014).
http://dx.doi.org/10.1063/1.4904918
48.
48.L. Mohan, G. Chandan, S. Mukundan, B. Roul, and S. B. Krupanidhi, J. Appl. Phys. 116, 234508 (2014).
http://dx.doi.org/10.1063/1.4904749
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/3/10.1063/1.4916264
Loading
/content/aip/journal/adva/5/3/10.1063/1.4916264
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/3/10.1063/1.4916264
2015-03-23
2016-12-11

Abstract

We have grown InGaN/GaN heterostructures using plasma-assisted molecular beam epitaxy and studied the temperature dependent electrical transport characteristics. The barrier height () and the ideally factor () estimated using thermionic emission model were found to be temperature dependent. The conventional Richardson plot of (/ 2) versus showed two temperature regions (region-I: 400–500 K and region-II: 200–350 K) and it provides Richardson constants ( ) which are much lower than the theoretical value of GaN. The observed variation in the barrier height and the presence of two temperature regions were attributed to spatial barrier inhomogeneities at the heterojunction interface and was explained by assuming a double Gaussian distribution of barrier heights with mean barrier height values 1.61 and 1.21 eV with standard deviation ( 2) of 0.044 and 0.022 V, respectively. The modified Richardson plot of (/ 2) − ( 2 2/2 2 2) versus for two temperature regions gave mean barrier height values as 1.61 eV and 1.22 eV with Richardson constants ( ) values 25.5 Acm−2K−2 and 43.9 Acm−2K−2, respectively, which are very close to the theoretical value. The observed barrier height inhomogeneities were interpreted on the basis of the existence of a double Gaussian distribution of barrier heights at the interface.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/3/1.4916264.html;jsessionid=e55dTniWV9ma9B-DhkxPKWse.x-aip-live-06?itemId=/content/aip/journal/adva/5/3/10.1063/1.4916264&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/3/10.1063/1.4916264&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/3/10.1063/1.4916264'
Right1,Right2,Right3,