Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/3/10.1063/1.4916272
1.
1.M. Korkusiński and P. Hawrylak, Phys. Rev. B 63, 195311 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.195311
2.
2.S. S. Li and J. B. Xia, Appl. Phys. Lett. 91, 115305 (2007).
3.
3.N. Hao, P. Zhang, J. Li, Z. Wang, W. Zhang, and Y. Wang, Phys. Rev. B 82, 195324 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.195324
4.
4.V. S. Pribiag, S. Nadj-Perge, S. M. Frolov, J. W. G. van den Berg, I. van Weperen, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Nat. Nanotechnol. 8, 170 (2013).
http://dx.doi.org/10.1038/nnano.2013.5
5.
5.L. Gaudreau, S. A. Studenikin, A. S. Sachrajda, P. Zawadzki, A. Kam, J. Lapointe, M. Korkusinski, and P. Hawrylak, Phys. Rev. Lett. 97, 036807 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.036807
6.
6.J. Peng and S. S. Li, Appl. Phys. Lett. 97, 242105 (2010).
http://dx.doi.org/10.1063/1.3526724
7.
7.J. Peng, Z. G. Fu, and S. S. Li, Appl. Phys. Lett. 101, 222108 (2012).
http://dx.doi.org/10.1063/1.4768939
8.
8.C. H. Park and S. G. Louie, Nano Lett. 9, 1793 (2009).
http://dx.doi.org/10.1021/nl803706c
9.
9.S. L. Zhu, B. G. Wang, and L. M. Duan, Phys. Rev. Lett. 98, 260402 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.260402
10.
10.L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger, Nature 483, 302 (2012).
http://dx.doi.org/10.1038/nature10871
11.
11.A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
12.
12.X. L. Qi and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.1057
13.
13.M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.3045
14.
14.D. Malko, C. Neiss, F. Viñes, and A. Görling, Phys. Rev. Lett. 108, 086804 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.086804
15.
15.R. Shen, L. B. Shao, Baigeng Wang, and D. Y. Xing, Phys. Rev. B 81, 041410(R) (2010).
http://dx.doi.org/10.1103/PhysRevB.81.041410
16.
16.N. M. R. Peres, Rev. Mod. Phys. 82, 2673 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.2673
17.
17.Z. R. Liu, J. Y. Wang, and J. L. Li, Phys. Chem. Chem. Phys. 15, 18855 (2013).
http://dx.doi.org/10.1039/c3cp53257g
18.
18.Properties of Gallium Arsenide, EMIS Data Reviews Series No. 2 (INSPEC, The Institute of Electrical Engineers, London, 1990).
19.
19.X. Mei, D. Kim, and H. E. Ruda, Appl. Phys. Lett. 81, 361 (2002).
http://dx.doi.org/10.1063/1.1484554
20.
20.T. Mano, R. Nötzel, G. J. Hamhuis, T. J. Eijkemans, and J. H. Wolter, Appl. Phys. Lett. 81, 1705 (2002).
http://dx.doi.org/10.1063/1.1503872
21.
21.J. H. Lee, Zh. M. Wang, N. W. Strm, Y. I. Mazur, and G. J. Salamo, Appl. Phys. Lett. 89, 202101 (2006).
http://dx.doi.org/10.1063/1.2388049
22.
22.M. Schmidbauer, Sh. Seydmohamadi, D. Grigoriev, Zh. M. Wang, Yu. I. Mazur, P. Schäfer, M. Hanke, R. Köhler, and G. J. Salamo, Phys. Rev. Lett. 96, 066108 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.066108
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/3/10.1063/1.4916272
Loading
/content/aip/journal/adva/5/3/10.1063/1.4916272
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/3/10.1063/1.4916272
2015-03-23
2016-12-03

Abstract

Analysis of the electronic properties of a two-dimensional (2D) deformed honeycomb structure arrayed by semiconductor quantum dots (QDs) is conducted theoretically by using tight-binding method in the present paper. Through the compressive or tensile deformation of the honeycomb lattice, the variation of energy spectrum has been explored. We show that, the massless Dirac fermions are generated in this adjustable system and the positions of the Dirac cones as well as slope of the linear dispersions could be manipulated. Furthermore, a clear linear correspondence between the distance of movement (the distance from the Dirac points to the Brillouin zone corners) and the tunable bond angle of the lattice are found in this artificial planar QD structure. These results provide the theoretical basis for manipulating Dirac fermions and should be very helpful for the fabrication and application of high-mobility semiconductor QD devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/3/1.4916272.html;jsessionid=Bu_ul4f6oMB1xrYuCV4WuaSJ.x-aip-live-03?itemId=/content/aip/journal/adva/5/3/10.1063/1.4916272&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/3/10.1063/1.4916272&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/3/10.1063/1.4916272'
Right1,Right2,Right3,