Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/3/10.1063/1.4916364
1.
1.J. Harris, Rheology and Non-Newtonian Flow (Longman, London, 1977).
2.
2.K. Sadeghy, A. H. Najafi, and M. Saffaripour, “Sakiadis flow of an upper-convected Maxwell fluid,” Int. J. Nonlinear Mech. 40, 1220-1228 (2005).
http://dx.doi.org/10.1016/j.ijnonlinmec.2005.05.006
3.
3.K. Sadeghy, H. Hajibeygi, and S. M. Taghavi, “Stagnation point flow of upper-convected Maxwell fluids,” Int. J. Non-Linear Mech. 41, 12421247 (2006).
http://dx.doi.org/10.1016/j.ijnonlinmec.2006.08.005
4.
4.M. Kumari and G. Nath, “Steady mixed convection stagnation-point flow of upper convected Maxwell fluids with magnetic field,” Int. J. Nonlinear Mech. 44, 1048-1055 (2009).
http://dx.doi.org/10.1016/j.ijnonlinmec.2009.08.002
5.
5.T. Hayat, Z. Abbas, and M. Sajid, “MHD stagnation-point flow of an upper-convected Maxwell fluid over a stretching surface,” Chaos Solitons and Fractals 39, 840-848 (2009).
http://dx.doi.org/10.1016/j.chaos.2007.01.067
6.
6.V. Aliakbar, A. Alizadeh-Pahlavan, and K. Sadeghy, “The influence of thermal radiation on MHD flow of Maxwellian fluids above stretching sheets,” Comm. Nonlinear Sci. Num. Simul. 14, 779-794 (2009).
http://dx.doi.org/10.1016/j.cnsns.2007.12.003
7.
7.B. Raftari and A. Yildirim, “The application of homotopy perturbation method for MHD flows of UCM fluids above porous stretching sheets,” Comp. Math. Appl. 59, 3328-3337 (2010).
http://dx.doi.org/10.1016/j.camwa.2010.03.018
8.
8.T. Hayat, M. Mustafa, and S. Mesloub, “Mixed convection boundary layer flow over a stretching surface filled with a Maxwell fluid in presence of Soret and Dufour effects,” Z. Naturforsch. 65a, 401-410 (2010).
9.
9.T. Hayat, M. Awais, and M. Sajid, “Mass transfer effects on the unsteady flow of UCM fluid over a stretching sheet,” Int. J. Moder. Phys. B 25, 2853-2878 (2011).
http://dx.doi.org/10.1142/S0217979211101041
10.
10.S. Mukhopadhyay, “Heat transfer analysis of the unsteady flow of a Maxwell fluid over a stretching surface in the presence of a heat source/sink,” Chin. Phys. Let. 29 (2011) DOI: 10.1088/0256-307X/29/5/054703.
http://dx.doi.org/10.1088/0256-307X/29/5/054703
11.
11.M. S. Abel, J. V. Tawade, and M. M. Nandeppanavar, “MHD flow and heat transfer for the upper-convected Maxwell fluid over a stretching sheet,” Meccanica 47, 385-393 (2012).
http://dx.doi.org/10.1007/s11012-011-9448-7
12.
12.T. Hayat, M. Mustafa, S. A. Shehzad, and S. Obaidat, “Melting heat transfer in the stagnation-point flow of an upper-convected Maxwell (UCM) fluid past a stretching sheet,” Int. J. Numer. Meth. Fluids 68, 233-243 (2012).
http://dx.doi.org/10.1002/fld.2503
13.
13.S. Shateyi, “A new numerical approach to MHD flow of a Maxwell fluid past a vertical stretching sheet in the presence of thermophoresis and chemical reaction,” Bound. Val. Prob. 196 (2013) DOI: 10.1186/1687-2770-2013-196.
http://dx.doi.org/10.1186/1687-2770-2013-196
14.
14.A. Mushtaq, M. Mustafa, T. Hayat, and A. Alsaedi, “Effect of thermal radiation on the stagnation-point flow of upper-convected Maxwell fluid over a stretching sheet,” J. Aerosp. Engg. 27, 04014015 (2014).
http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000361
15.
15.L. J. Crane, “Flow past a stretching plate,” Zeitschrift Fur Angewandte Mathematik Und Physik 21, 645-657 (1970).
http://dx.doi.org/10.1007/BF01587695
16.
16.E. Magyari and B. Keller, “Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface,” Journal of Physics D: Applied Physics 32 (1999) doi: 10.1088/0022-3727/32/5/012.
http://dx.doi.org/10.1088/0022-3727/32/5/012
17.
17.E. M. A. Elbashbeshy, “Heat transfer over an exponentially stretching continuous surface with suction,” Arc. Mech. 53, 643-651 (2001).
18.
18.S. K. Khan and E. Sanjayanand, “Viscoelastic boundary layer flow and heat transfer over an exponential stretching sheet,” Int. J. Heat Mass Transf. 48, 1534-1542 (2005).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.10.032
19.
19.M. Sajid and T. Hayat, “Influence of thermal radiation on the boundary layer flow due to an exponentially stretching sheet,” Int. Commun. Heat Mass Transf. 35, 347-356 (2008).
http://dx.doi.org/10.1016/j.icheatmasstransfer.2007.08.006
20.
20.K. Bhattacharyya, “Boundary layer flow and heat transfer over an exponentially shrinking sheet,” Chin. Phys. Lett. 28 (2011) doi: 10.1088/0256-307X/28/7/074701.
http://dx.doi.org/10.1088/0256-307X/28/7/074701
21.
21.M. Mustafa, T. Hayat, and S. Obaidat, “Boundary layer flow of a nanofluid over an exponentially stretching sheet with convective boundary conditions,” Int. J. Num. Meth. Heat & Fluid Flow 23, 945-959 (2013).
http://dx.doi.org/10.1108/HFF-09-2011-0179
22.
22.A. Mushtaq, M. Mustafa, T. Hayat, M. Rahi, and A. Alsaedi, “Exponentially stretching sheet in a Powell-Eyring fluid: Numerical and series solutions,” Z. Naturforsch. 68a, 791-798 (2013).
23.
23.I. C. Liu, H. H. Wang, and Y. F. Peng, “Flow and heat transfer for three-dimensional flowover an exponentially stretching surface,” Chem. Eng. Comm. 200, 253-268 (2013).
http://dx.doi.org/10.1080/00986445.2012.703148
24.
24.Z. Abbas, T. Javed, N. Ali, and M. Sajid, “Flow and heat transfer of Maxwell fluid over an exponentially stretching sheet: A non-similar solution,” Heat Transf. Asian Res. 43, 233-242 (2014).
http://dx.doi.org/10.1002/htj.21074
25.
25.T. Hussain, S. A. Shehzad, T. Hayat, A. Alsaedi, F. Al-Solami, and M. Ramzan, “Radiative hydromagnetic flow of Jeffrey nanofluid by an exponentially stretching sheet,” PLoS ONE 9 (2014) doi: 10.1371/journal.pone.0103719.
http://dx.doi.org/10.1371/journal.pone.0103719
26.
26.K. V. Wong and O. D. Leon, “Applications of Nanofluids: Current and Future,” Advan. Mech. Engg. 2010 Article ID 519659.
27.
27.J. Buongiorno, “Convective transport in nanofluids,” ASME J. Heat Transf. 128, 240250 (2006).
http://dx.doi.org/10.1115/1.2150834
28.
28.A. V. Kuznetsov and D. A. Nield, “Natural convective boundary-layer flow of a nanofluid past a vertical plate,” Int. J. Therm. Sci. 49, 243-247 (2010).
http://dx.doi.org/10.1016/j.ijthermalsci.2009.07.015
29.
29.D. A. Nield and A. V. Kuznetsov, “The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid,” Int. J. Heat Mass Transf. 52, 5792-5795 (2009).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.07.024
30.
30.W. A. Khan and I. Pop, “Boundary-layer flow of a nanofluid past a stretching sheet,” Int. J. Heat Mass Transf. 53, 2477-2483 (2010).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.01.032
31.
31.M. Mustafa, T. Hayat, I. Pop, S. Asghar, and S. Obaidat, “Stagnation-point flow of a nanofluid towards a stretching sheet,” Int. J. Heat Mass Transf. 54, 5588-5594 (2011).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.07.021
32.
32.M. Mustafa, M. A. Farooq, T. Hayat, and A. Alsaedi, “Numerical and series solutions for stagnation-point flow of nanofluid over an exponentially stretching sheet,” PLoS ONE 8 (2013) doi: 10.1371/journal.pone.0061859.
http://dx.doi.org/10.1371/journal.pone.0061859
33.
33.M. Mustafa, T. Hayat, and A. Alsaedi, “Unsteady boundary layer flow of nanofluid past an impulsively stretching sheet,” J. Mech. 29, 423-432 (2013).
http://dx.doi.org/10.1017/jmech.2013.9
34.
34.O. D. Makinde, W. A. Khan, and Z. H. Khan, “Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet,” Int. J. Heat Mass Transf. 62, 526-533 (2013).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.03.049
35.
35.A. V. Kuznetsov and D. A. Nield, “Natural convective boundary-layer flow of a nanofluid past a vertical plate: A revised model,” Int. J. Therm. Sci. 77, 126-129 (2014).
http://dx.doi.org/10.1016/j.ijthermalsci.2013.10.007
36.
36.M. Mustafa, M. Nawaz, T. Hayat, and A. Alsaedi, “MHD boundary layer flow of second grade nanofluid over a stretching sheet with convective boundary condition,” J. Aerosp. Engg. 27, 04014006 (2014).
http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000314
37.
37.A. Mushtaq, M. Mustafa, T. Hayat, and A. Alsaedi, “Nonlinear radiative heat transfer in the flow of nanofluid due to solar energy: A numerical study,” J. Taiwan Inst. Chem. Eng. 45, 1176-1183 (2014).
http://dx.doi.org/10.1016/j.jtice.2013.11.008
38.
38.M. M. Rashidi, N. Freidoonimehr, A. Hosseini, O. A. Bég, and T. K. Hung, “Homotopy simulation of nanofluid dynamics from a non-linearly stretching isothermal permeable sheet with transpiration,” Meccan. 49, 469-482 (2014).
http://dx.doi.org/10.1007/s11012-013-9805-9
39.
39.M. M. Rashidi, S. Abelman, and N. Freidoonimehr, “Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid,” Int. J. Heat Mass Transf. 62, 515-525 (2013).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.03.004
40.
40.M. Turkyilmazoglu, “Unsteady convection flow of some nanofluids past a moving vertical plate with heat transfer,” ASME J. Heat Transf. 136, 031704 (2013) doi: 10.1115/1.4025730.
http://dx.doi.org/10.1115/1.4025730
41.
41.M. Turkyilmazoglu and I. Pop, “Heat and mass transfer of unsteady natural convection flow of some nanofluids past a vertical infinite flat plate with radiation effect,” Int. J. Heat Mass Transf. 59, 167-171 (2013).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.12.009
42.
42.M. Sheikholeslami and M. Gorji-Bandpy, “Free convection of ferrofluid in a cavity heated from below in the presence of an external magnetic field,” Powder Technol. 256, 490-498 (2014).
http://dx.doi.org/10.1016/j.powtec.2014.01.079
43.
43.M. Sheikholeslami, M. Gorji-Bandpy, D. D. Ganji, and S. Soleimani, “Thermal management for free convection of nanofluid using two phase model,” J. Mol. Liq. 194, 179-187 (2014).
http://dx.doi.org/10.1016/j.molliq.2014.01.022
44.
44.M. Sheikholeslami, D. D. Ganji, M. Gorji-Bandpy, and S. Soleimani, “Magnetic field effect on nanofluid flow and heat transfer using KKL model,” J. Taiwan Inst. Chem. Eng. 45, 795807 (2014).
http://dx.doi.org/10.1016/j.jtice.2013.09.018
45.
45.J. A. Khan, M. Mustafa, T. Hayat, M. Asif Farooq, A. Alsaedi, and S. J. Liao, “On model for three-dimensional flow of nanofluid: An application to solar energy,” J. Molec. Liqui. 194, 41-47 (2014).
http://dx.doi.org/10.1016/j.molliq.2013.12.045
46.
46.M. Mustafa, A. Mushtaq, T. Hayat, and B. Ahmad, “Nonlinear radiation heat transfer effects in the natural convective boundary layer flow of nanofluid past a vertical plate: A numerical study,” PLoS ONE 9 (2014) doi: 10.1371/journal.pone.0103946.
http://dx.doi.org/10.1371/journal.pone.0103946
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/3/10.1063/1.4916364
Loading
/content/aip/journal/adva/5/3/10.1063/1.4916364
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/3/10.1063/1.4916364
2015-03-24
2016-09-29

Abstract

This article addresses steady flow of Maxwell nanofluid induced by an exponentially stretching sheet subject to convective heating. The revised model of passively controlled wall nanoparticle volume fraction is taken into account. Numerical solutions of the arising non-linear boundary value problem (BVP) are obtained by using MATLAB built-in function bvp4c. Simulations are performed for various values of embedded parameters which include local Deborah number, Prandtl number, Biot number, Brownian motion parameter and thermophoresis parameter. The results are consistent with the previous studies in some limiting cases. It is found that velocity decreases and temperature increases when the local Deborah number is increased. Moreover the influence of Brownian diffusion on temperature and heat transfer rate is found to be insignificant.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/3/1.4916364.html;jsessionid=YkbCeGfSWVhcq4yzmyX1YzrR.x-aip-live-06?itemId=/content/aip/journal/adva/5/3/10.1063/1.4916364&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/3/10.1063/1.4916364&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/3/10.1063/1.4916364'
Right1,Right2,Right3,