Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/3/10.1063/1.4916643
1.
1.H. Hosono, Thin Solid Films 515, 6000 (2007).
http://dx.doi.org/10.1016/j.tsf.2006.12.125
2.
2.K. Normura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004).
http://dx.doi.org/10.1038/nature03090
3.
3.T. Minami, Semicond. Sci. Technol. 20, S35 (2005).
http://dx.doi.org/10.1088/0268-1242/20/4/004
4.
4.K. Normura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science 23, 1269 (2003).
http://dx.doi.org/10.1126/science.1083212
5.
5.H. Ohta and H. Hosono, materialstoday 7, 42 (2004).
6.
6.K. Nomura, T. Kamiya, H. Ohta, T. Uruga, M. Hirano, and H. Hosono, Phys. Rev. B 75, 035212 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.035212
7.
7.T. Kamiya and H. Hosono, J. Appl. Cream. Technol. 2, 285 (2005).
http://dx.doi.org/10.1111/j.1744-7402.2005.02033.x
8.
8.C. McGuinness, C. B. Stagarescu, P. J. Ryan, J. E. Downes, D. Fu, K. E. Smith, and R. G. Egdell, Phys. Rev. B 68, 165104 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.165104
9.
9.K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, Jpn. J. Appl. Phys. 45, 4303 (2006).
http://dx.doi.org/10.1143/JJAP.45.4303
10.
10.M. Orita, H. Tanji, M. Mizuno, H. Adachi, and I. Tanaka, Phys. Rev. B 61, 1811 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.1811
11.
11.D. -Y. Cho, J. Song, K. Na, C. Hwang, J. Jeong, J. Jeong, and Y. -G. Mo, Appl. Phys. Lett. 94, 112112 (2009).
http://dx.doi.org/10.1063/1.3103323
12.
12.A. Janotti and C. G. Van de Walle, Appl. Phys. Lett. 87, 122102 (2005).
http://dx.doi.org/10.1063/1.2053360
13.
13.J. Yao, N. Xu, S. Deng, J. Chen, J. She, H. -P. D. Shieh, P. -T. Liu, and Y. -P. Huang, IEEE Trans. on Electron Device 58, 1121 (2011).
http://dx.doi.org/10.1109/TED.2011.2105879
14.
14.J. Yuh and B. Bae, Electron. Mater. Lett. 10, 89 (2014).
http://dx.doi.org/10.1007/s13391-013-3112-4
15.
15.T. Kamiya, K. Nomura, M. Hirano, and H. Hosono, Phys. Stat. Sol. 5, 3098 (2008).
http://dx.doi.org/10.1002/pssc.200779300
16.
16.Y. Jeong, C. Bae, D. Kim, K. Song, K. Woo, H. Shin, G. Cao, and J. Moon, ACS Appl. Mat. Inter. 2, 611 (2010).
http://dx.doi.org/10.1021/am900787k
17.
17.A. Suresh and J. F. Muth, Appl. Phys. Lett. 92, 033502 (2008).
http://dx.doi.org/10.1063/1.2824758
18.
18.H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, Appl. Phys. Lett. 89, 112123 (2006).
http://dx.doi.org/10.1063/1.2353811
19.
19.W. Lim, S. -H. Kim, Y. -L. Wang, J. W. Lee, D. P. Norton, S. J. Pearton, F. Ren, and I. I. Kravchenko, J. Vac. Sci. Technol. B 26, 959 (2008).
http://dx.doi.org/10.1116/1.2917075
20.
20.A. Suresh, P. Gollakota, P. Wellenius, A. Dhawan, and J. F. Muth, Thin Solid Films 516, 1326 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.03.153
21.
21.A. Suresh, P. Wellenius, V. Baliga, H. Luo, L. M. Lunardi, and J. F. Muth, IEEE Electron Device Lett. 31, 317 (2010).
http://dx.doi.org/10.1109/LED.2010.2041525
22.
22.P. Görrn, F. Ghaffari, T. Riedl, and W. Kowalsky, Solid-State Electron. 53, 329 (2009).
http://dx.doi.org/10.1016/j.sse.2009.01.006
23.
23.J. Y. Choi, S. Kim, and S. Y. Lee, Electron. Mater. Lett. 9, 489 (2013).
http://dx.doi.org/10.1007/s13391-013-0045-x
24.
24.J. S. Lee, S. Chang, S. -M. Koo, and S. Y. Lee, IEEE Electron Device Lett. 31, 225 (2010).
http://dx.doi.org/10.1109/LED.2009.2038806
25.
25.M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J. -S. Park, J. K. Jeong, Y. -G. Mo, and H. D. Kim, Appl. Phys. Lett. 90, 212114 (2007).
http://dx.doi.org/10.1063/1.2742790
26.
26.J. -S. Park, J. K. Jeong, Y. -G. Mo, H. D. Kim, and S. -I. Kim, Appl. Phys. Lett. 99, 262106 (2007).
http://dx.doi.org/10.1063/1.2753107
27.
27.J. K. Jeong, J. H. Jeong, H. W. Yang, J. -S. Park, Y. -G. Mo, and H. D. Kim, Appl. Phys. Lett. 91, 113505 (2007).
http://dx.doi.org/10.1063/1.2783961
28.
28.S. -H. Choi and M. -K. Han, Appl. Phys. Lett. 100, 043503 (2012).
http://dx.doi.org/10.1063/1.3679109
29.
29.K. H. Ji, J. -I. Kim, H. Y. Jung, S. Y. Park, R. Choi, U. K. Kim, C. S. Hwang, D. Lee, H. Hwang, and J. K. Jeong, Appl. Phys. Lett. 98, 103509 (2011).
http://dx.doi.org/10.1063/1.3564882
30.
30.K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, Appl. Phys. Lett. 95, 013502 (2009).
http://dx.doi.org/10.1063/1.3159831
31.
31.M. Kimura, T. Nakanishi, K. Nomura, T. Kamiya, and H. Hosono, Appl. Phys. Lett. 92, 133512 (2008).
http://dx.doi.org/10.1063/1.2904704
32.
32.K. Nomura, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, Appl. Phys. Lett. 93, 192107 (2008).
http://dx.doi.org/10.1063/1.3020714
33.
33.J. S. Park, W. -J. Maeng, H. -S. Kim, and J. -S. Park, Thin Solid Films 520, 1679 (2012).
http://dx.doi.org/10.1016/j.tsf.2011.07.018
34.
34.T. Iwasaki, N. Itagaki, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, Appl. Phys. Lett. 90, 242114 (2007).
http://dx.doi.org/10.1063/1.2749177
35.
35.P. K. Nayak, T. Busani, E. Elamurugu, P. Barquinha, R. Martins, Y. Hong, and E. Fortunato, Appl. Phys. Lett. 97, 183504 (2010).
http://dx.doi.org/10.1063/1.3514249
36.
36.E. Chong, K. C. Jo, and S. Y. Lee, Appl. Phys. Lett. 96, 152102 (2010).
http://dx.doi.org/10.1063/1.3387819
37.
37.C. -J. Kim, S. Kim, J. -H. Lee, J. -S. Park, S. Kim, J. Park, E. Lee, J. Lee, Y. Park, J. H. Kim, S. T. Shin, and U. -I. Chung, Appl. Phys. Lett. 95, 252103 (2009).
http://dx.doi.org/10.1063/1.3275801
38.
38.Y. R. Denny, H. C. Shin, S. Seo, S. K. Oh, H. J. Kang, D. Tahir, S. Heo, J. G. Chung, J. C. Lee, and S. Tougaard, J. Electron Spectroscopy and Related Phenomena 185, 18 (2012).
http://dx.doi.org/10.1016/j.elspec.2011.12.004
39.
39.W. H. Jeong, G. H. Kim, H. S. Shin, B. D. Ahn, H. J. Kim, M. -K. Ryu, K. -B. Park, J. -B. Seon, and S. Y. Lee, Appl. Phys. Lett. 96, 093503 (2010).
http://dx.doi.org/10.1063/1.3340943
40.
40.K. Nomura, T. Kamiya, H. Ohta, K. Ueda, M. Hirano, and H. Hosono, Appl. Phys. Lett. 85, 1993 (2004).
http://dx.doi.org/10.1063/1.1788897
41.
41.W. Chr. Germs, W. H. Adriaans, A. K. Tripathi, W. S. C. Roelofs, B. Cobb, R. A. J. Janssen, G. H. Gelinck, and M. Kemerink, Phys. Rev. B 86, 155319 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.155319
42.
42.A. Rolland, J. Richard, J. P. Kleider, and D. Mencaraglia, J. Electrochem. Soc. 140, 3679 (1993).
http://dx.doi.org/10.1149/1.2221149
43.
43.J. -S. Park, J. K. Jeong, H. -J. Chung, Y. -G. Mo, and H. D. Kim, Appl. Phys. Lett. 92, 072104 (2008).
http://dx.doi.org/10.1063/1.2838380
44.
44.J. -S. Park, T. S. Kim, K. S. Son, J. S. Jung, K. -H. Lee, J. -Y. Kwon, B. Koo, and S. Lee, IEEE Electron Device Lett. 31, 440 (2010).
http://dx.doi.org/10.1109/LED.2010.2043050
45.
45.S. -Y. Lee, S. -J. Kim, Y. W. Lee, W. -G. Lee, K. -S. Yoon, J. -Y. Kwon, and M. -K. Han, IEEE Electron Device Lett. 33, 218 (2012).
http://dx.doi.org/10.1109/LED.2011.2177633
46.
46.M. D. H. Chowdhury, P. Migliorato, and J. Jang, Appl. Phys. Lett. 97, 173506 (2010).
http://dx.doi.org/10.1063/1.3503971
47.
47.B. Ryu, H. -K. Noh, E. -A. Choi, and K. J. Chang, Appl. Phys. Lett. 97, 022108 (2010).
http://dx.doi.org/10.1063/1.3464964
48.
48.T. -C. Chen, T. -C. Chang, T. -Y. Hsieh, C. -T. Tsai, S. -C. Chen, C. -S. Lin, M. -C. Hung, C. -H. Tu, J. -J. Chang, and P. -L. Chen, Appl. Phys. Lett. 97, 192103 (2010).
http://dx.doi.org/10.1063/1.3514251
49.
49.D. Kang, H. Lim, C. Kim, I. Song, J. Park, and Y. Park, Appl. Phys. Lett. 90, 192101 (2007).
http://dx.doi.org/10.1063/1.2723543
50.
50.Y. -C. Chen, T. -C. Chang, H. -W. Li, S. -C. Chen, J. Lu, W. -F. Chung, Y. -H. Tai, and T. -Y. Tseng, Appl. Phys. Lett. 96, 262104 (2010).
http://dx.doi.org/10.1063/1.3457996
51.
51.J. Yao, N. Xu, S. Deng, J. Chen, J. She, H. D. Shieh, P. -T. Liu, and Y- P. Huang, IEEE Trans. Electron Devices 58, 1121 (2011).
http://dx.doi.org/10.1109/TED.2011.2105879
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/3/10.1063/1.4916643
Loading
/content/aip/journal/adva/5/3/10.1063/1.4916643
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/3/10.1063/1.4916643
2015-03-27
2016-09-29

Abstract

Metal-oxide based thin-film transistors (oxide-TFTs) are very promising for use in next generation electronics such as transparent displays requiring high switching and driving performance. In this study, we demonstrate an optimized process to secure excellent device performance with a favorable shift of the threshold voltage toward 0V in amorphous hafnium-indium-zinc-oxide (a-HfIZO) TFTs by using post-treatment with oxygen annealing. This enhancement results from the improved interfacial characteristics between gate dielectric and semiconductor layers due to the reduction in the density of interfacial states related to oxygen vacancies afforded by oxygen annealing. The device statistics confirm the improvement in the device-to-device and run-to-run uniformity. We also report on the photo-induced stability in such oxide-TFTs against long-term UV irradiation, which is significant for transparent displays.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/3/1.4916643.html;jsessionid=WqpX5AFzXkRRNr04j0TtQEj0.x-aip-live-03?itemId=/content/aip/journal/adva/5/3/10.1063/1.4916643&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/3/10.1063/1.4916643&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/3/10.1063/1.4916643'
Right1,Right2,Right3,