Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/3/10.1063/1.4916778
1.
1.S. K. Ray, S. Maikap, W. Banerjee, and S. Das, J. Phys. D Appl. Phys. 46, 153001 (2013).
http://dx.doi.org/10.1088/0022-3727/46/15/153001
2.
2.D. D. Vaughn II and R. E. Schaak, Chem. Soc. Rev. 42, 2861 (2013).
http://dx.doi.org/10.1039/C2CS35364D
3.
3.C. M. Compagnoni, R. Gusmeroli, D. Ielmini, A. S. Spinelli, and A. L. Lacaita, J. Nanosci. Nanotechno. 7, 193 (2007).
4.
4.D. J. Rowe and U. R. Kortshagen, APL Mater. 2, 022104 (2014).
http://dx.doi.org/10.1063/1.4865158
5.
5.Q. Luan, Z. Ni, S. Koura, T. Zhu, D. Yang, and X. D. Pi, AIP Adv. 4, 127108 (2014).
http://dx.doi.org/10.1063/1.4903550
6.
6.L. Mangolini, J. Vac. Sci. Technol. B 31, 020801 (2013).
http://dx.doi.org/10.1116/1.4794789
7.
7.X. D. Pi, R. W. Liptak, J. Deneen Nowak, N. P. Wells, C. B. Carter, S. A. Campbell, and U. Kortshagen, Nanotechnology 19, 245603 (2008).
http://dx.doi.org/10.1088/0957-4484/19/24/245603
8.
8.D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen, Appl. Phys. Lett. 88, 233116 (2006).
http://dx.doi.org/10.1063/1.2210788
9.
9.L. M. Wheeler, L. M. Levij, and U. R. Kortshagen, J. Phys. Chem. Lett. 4, 3392 (2013).
http://dx.doi.org/10.1021/jz401576b
10.
10.D. C. Lee, J. M. Pietryga, I. Robel, D. J. Werder, R. D. Schaller, and V. I. Klimov, J. Am. Chem. Soc. 131, 3436 (2009).
http://dx.doi.org/10.1021/ja809218s
11.
11.D. A. Ruddy, J. C. Johnson, E. R. Smith, and N. R. Neale, ACS Nano 4, 7459 (2010).
http://dx.doi.org/10.1021/nn102728u
12.
12.T. V. Buuren, L. N. Dinh, L. L. Chase, W. J. Siekhaus, and L. J. Terminello, Phys. Rev. Lett. 80, 3803 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.3803
13.
13.M. L. Mastronardi, F. Maier-Flaig, D. Faulkner, E. J. Henderson, C. Kübel, U. Lemmer, and G. A. Ozin, Nano Lett. 12, 337 (2012).
http://dx.doi.org/10.1021/nl2036194
14.
14.C. M. Hessel, D. Reid, M. G. Panthani, M. R. Rasch, B. W. Goodfellow, J. Wei, H. Fujii, V. Akhavan, and B. A. Korgel, Chem. Mater. 24, 393 (2011).
http://dx.doi.org/10.1021/cm2032866
15.
15.G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, Phys. Rev. B 62, 15942 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.15942
16.
16.Y. S. Ma, X. D. Pi, and D. Yang, J. Phys. Chem. C 116, 5401 (2012).
http://dx.doi.org/10.1021/jp211177d
17.
17.R. Wang, X. D. Pi, and D. Yang, J. Phys. Chem. C 116, 19434 (2012).
http://dx.doi.org/10.1021/jp307785v
18.
18.R. Wang, X. D. Pi, and D. Yang, Phys. Chem. Chem. Phys. 15, 1815 (2013).
http://dx.doi.org/10.1039/c2cp43763e
19.
19.M. Dasog, Z. Yang, S. Regli, T. M. Atkins, A. Faramus, M. P. Singh, E. Muthuswamy, S. M. Kauzlarich, R. D. Tilley, and J. G. C. Veinot, ACS Nano 7, 2676 (2013).
http://dx.doi.org/10.1021/nn4000644
20.
20.D. Mariotti, S. Mitra, and V. Svrcek, Nanoscale 5, 1385 (2013).
http://dx.doi.org/10.1039/c2nr33170e
21.
21.X. D. Pi and U. Kortshagen, Nanotechnology 20, 295602 (2009).
http://dx.doi.org/10.1088/0957-4484/20/29/295602
22.
22.S. D. Barry, Z. Yang, J. A. Kelly, E. J. Henderson, and J. G. C. Veinot, Chem. Mater. 23, 5096 (2011).
http://dx.doi.org/10.1021/cm202761k
23.
23.X. D. Pi, R. Gresback, R. W. Liptak, S. A. Campbell, and U. Kortshagen, Appl. Phys. Lett. 92, 123102 (2008).
http://dx.doi.org/10.1063/1.2897291
24.
24.M. Fujii, Y. Yamaguchi, Y. Takase, K. Ninomiya, and S. Hayashi, Appl. Phys. Lett. 85, 1158 (2004).
http://dx.doi.org/10.1063/1.1779955
25.
25.Y. Q. Wang, R. Smirani, and G. G. Ross, Nano Lett. 4, 2041 (2004).
http://dx.doi.org/10.1021/nl048764q
26.
26.X. D. Pi, L. Mangolini, S. Campbell, and U. Kortshagen, Phys. Rev. B 75, 085423 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.085423
27.
27.S. P. Beckman and J. R. Chelikowsky, Physica B 401, 537 (2007).
http://dx.doi.org/10.1016/j.physb.2007.09.016
28.
28.Y. Li, P. Liang, Z. Hu, S. Guo, Q. You, J. Sun, N. Xu, and J. Wu, Appl. Surf. Sci. 300, 178 (2014).
http://dx.doi.org/10.1016/j.apsusc.2014.02.047
29.
29.C. Delerue, G. Allan, and M. Lannoo, Phys. Rev. B 48, 11024 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.11024
30.
30.Z. Ni, X. D. Pi, and D. Yang, Phys. Rev. B 89, 035312 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.035312
31.
31.A. Thogersen, J. Mayandi, T. G. Finstad, A. Olsen, J. S. Christensen, M. Mitome, and Y. Bando, J. Appl. Phys. 104, 094315 (2008).
http://dx.doi.org/10.1063/1.3014195
32.
32.S. Hu, J. Sun, X. Du, F. Tian, and L. Jiang, Diam. Relat. Mater. 17, 142 (2008).
http://dx.doi.org/10.1016/j.diamond.2007.11.009
33.
33.H. Hofmeister, Encyclopedia Nanosci. Nanotechnol. 3, 431 (2003).
34.
34.P. D. Nguyen, D. M. Kepaptsoglou, Q. M. Ramasse, and A. Olsen, Phys. Rev. B 85, 085315 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.085315
35.
35.Y. M. Yang, X. L. Wu, L. W. Yang, and F. Kong, J. Cryst. Growth 291, 358 (2006).
http://dx.doi.org/10.1016/j.jcrysgro.2006.03.020
36.
36.T. Okabe, Y. Kagawa, and S. Takai, Phil. Mag. Lett. 63, 233 (1991).
http://dx.doi.org/10.1080/09500839108205996
37.
37.W. Yuan, T. Masaki, and F. Kazuo, Japanese J. Appl. Phys. 38, 7241 (1999).
http://dx.doi.org/10.1143/JJAP.38.7241
38.
38.M. Klimenkov, W. Matz, S. A. Nepijko, and M. Lehmann, Nucl. Instrum. Meth. B 179, 209 (2001).
http://dx.doi.org/10.1016/S0168-583X(01)00452-9
39.
39.S. Yamada, J. Appl. Phys. 94, 6818 (2003).
http://dx.doi.org/10.1063/1.1620373
40.
40.J. Narayan and A. S. Nandedkar, Philos. Mag. B 63, 1181 (1991).
http://dx.doi.org/10.1080/13642819108207595
41.
41.H. Sawada and H. Ichinose, Diam. Relat. Mater. 14, 109 (2005).
http://dx.doi.org/10.1016/j.diamond.2004.07.016
42.
42.E. Degoli, G. Cantele, E. Luppi, R. Magri, D. Ninno, O. Bisi, and S. Ossicini, Phys. Rev. B 69, 155411 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.155411
43.
43.H. C. Weissker, J. Furthmüller, and F. Bechstedt, Phys. Rev. B 67, 245304 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.245304
44.
44.X. B. Chen, X. D. Pi, and D. Yang, J. Phys. Chem. C 115, 661 (2011).
http://dx.doi.org/10.1021/jp1102934
45.
45.X. D. Pi, X. B. Chen, Y. S. Ma, and D. Yang, Nanoscale 3, 4584 (2011).
http://dx.doi.org/10.1039/c1nr10940e
46.
46.J. Narayan, J. Mater. Res. 5, 2414 (1990).
http://dx.doi.org/10.1557/JMR.1990.2414
47.
47.D. Shechtman, A. Feldman, M. D. Vaudin, and J. L. Hutchison, Appl. Phys. Lett. 62, 487 (1993).
http://dx.doi.org/10.1063/1.108915
48.
48.Z. Y. Ni, X. D. Pi, and D. Yang, RSC Adv. 2, 11227 (2012).
http://dx.doi.org/10.1039/c2ra21537c
49.
49.B. Delley, J. Chem. Phys. 113, 7756 (2000).
http://dx.doi.org/10.1063/1.1316015
50.
50.A. Williamson, J. Grossman, R. Hood, A. Puzder, and G. Galli, Phys. Rev. Lett. 89, 196803 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.196803
51.
51.F. F. Abraham, Homogeneous nucleation theory (Academic Press, New York, 1974).
52.
52.Y. Ding and Y. Wang, Appl. Phys. Lett. 100, 083102 (2012).
http://dx.doi.org/10.1063/1.3688035
53.
53.B. Fruhberger, J. Eng, and J. G. Chen, Catal. Lett. 45, 85 (1997).
http://dx.doi.org/10.1023/A:1019007426806
54.
54.J. Terry, R. Mo, C. Wigren, R. Y. Cao, G. Mount, P. Pianetta, M. R. Linford, and C. E. D. Chidsey, Nucl. Instrum. Meth. B 133, 94 (1997).
http://dx.doi.org/10.1016/S0168-583X(97)00467-9
55.
55.P. W. Loscutoff and S. F. Bent, Annu. Rev. Phys.Chem. 57, 467 (2006).
http://dx.doi.org/10.1146/annurev.physchem.56.092503.141307
56.
56.M. Liu, L. Wang, G. Lu, X. Yao, and L. Guo, Energ. Environ. Sci. 4, 1372 (2011).
http://dx.doi.org/10.1039/c0ee00604a
57.
57.W. Nan, Y. Niu, H. Qin, F. Cui, Y. Yang, R. Lai, W. Lin, and X. Peng, J. Am. Chem. Soc. 134, 19685 (2012).
http://dx.doi.org/10.1021/ja306651x
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/3/10.1063/1.4916778
Loading
/content/aip/journal/adva/5/3/10.1063/1.4916778
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/3/10.1063/1.4916778
2015-03-30
2016-12-05

Abstract

Although twins are often observed in Si/Ge nanocrystals (NCs), little theoretical investigation has been carried out to understand this type of important planar defects in Si/Ge NCs. We now study the twinning of Si/Ge NCs in the frame work of density functional theory by representatively considering single-twinned and fivefold-twinned Si/Ge NCs. It is found that the formation of twinned Si/Ge NCs is thermodynamically possible. The effect of twinning on the formation of Si NCs is different from that of Ge NCs. For both Si and Ge NCs twinning enhances their stability. The quantum confinement effect is weakened by twinning for Si NCs. Twinning actually enhances the quantum confinement of Ge NCs when they are small (<136 atoms), while weakening the quantum confinement of Ge NCs as their size is large (>136 atoms). The current results help to better understand the experimental work on twinned Si/Ge NCs and guide the tuning of Si/Ge-NC structures for desired properties.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/3/1.4916778.html;jsessionid=Oo9rOHzegeNt0a7de-rpA0Ip.x-aip-live-02?itemId=/content/aip/journal/adva/5/3/10.1063/1.4916778&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/3/10.1063/1.4916778&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/3/10.1063/1.4916778'
Right1,Right2,Right3,