Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/3/10.1063/1.4916886
1.
1.W. Bogaerts, V. Wiaux, D. Taillaert, S. Beckx, B. Luyssaert, P. Bienstman, and R. Baets, IEEE journal of selected topics in quantum electronics 8(4), 928-934 (2002).
http://dx.doi.org/10.1109/JSTQE.2002.800845
2.
2.C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, Applied Surface Science 164(1), 111-117 (2000).
http://dx.doi.org/10.1016/S0169-4332(00)00352-4
3.
3.F. Watt, A. Bettiol, J. Van Kan, E. Teo, and M. Breese, International Journal of Nanoscience 4(03), 269-286 (2005).
http://dx.doi.org/10.1142/S0219581X05003139
4.
4.S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Journal of Vacuum Science & Technology B 14(6), 4129-4133 (1996).
http://dx.doi.org/10.1116/1.588605
5.
5.A. Bertsch, S. Jiguet, and P. Renaud, Journal of Micromechanics and Microengineering 14(2), 197-203 (2004).
http://dx.doi.org/10.1088/0960-1317/14/2/005
6.
6.M. Walther, A. Ortner, H. Meier, U. Loffelmann, P. J. Smith, and J. G. Korvink, Applied Physics Letters 95(25), 251107 (2009).
http://dx.doi.org/10.1063/1.3276544
7.
7.C. Pacholski, A. Kornowski, and H. Weller, Angewandte Chemie 41(7), 1188-1191 (2002).
http://dx.doi.org/10.1002/1521-3773(20020402)41:7%3C1188::AID-ANIE1188%3E3.0.CO;2-5
8.
8.S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, Nature 412(6848), 697-698 (2001).
http://dx.doi.org/10.1038/35089130
9.
9.J. Serbin, A. Egbert, A. Ostendorf, B. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, Optics letters 28(5), 301-303 (2003).
http://dx.doi.org/10.1364/OL.28.000301
10.
10.A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, and B. Chichkov, Acta biomaterialia 2(3), 267-275 (2006).
http://dx.doi.org/10.1016/j.actbio.2006.01.004
11.
11.A. Ovsianikov, B. Chichkov, P. Mente, N. Monteiro-Riviere, A. Doraiswamy, and R. Narayan, International journal of applied ceramic technology 4(1), 22-29 (2007).
http://dx.doi.org/10.1111/j.1744-7402.2007.02115.x
12.
12.F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, A. Ishikawa, and S. Kawata, Optics express 14(2), 800-809 (2006).
http://dx.doi.org/10.1364/OPEX.14.000800
13.
13.V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, Journal of Laser Applications 24(4), 042004 (2012).
http://dx.doi.org/10.2351/1.4712151
14.
14.M. Göppert-Mayer, Annalen der Physik 18(7-8), 466-479 (2009).
http://dx.doi.org/10.1002/andp.200910358
15.
15.W. Kaiser and C. Garrett, Physical Review Letters 7(6), 229 (1961).
http://dx.doi.org/10.1103/PhysRevLett.7.229
16.
16.S. Maruo, O. Nakamura, and S. Kawata, Opt Lett 22(2), 132-134 (1997).
http://dx.doi.org/10.1364/OL.22.000132
17.
17.K. Kaneko, H.-B. Sun, X.-M. Duan, and S. Kawata, Applied Physics Letters 83(11), 2091 (2003).
http://dx.doi.org/10.1063/1.1610253
18.
18.J. Serbin, A. Ovsianikov, and B. Chichkov, Optics express 12(21), 5221-5228 (2004).
http://dx.doi.org/10.1364/OPEX.12.005221
19.
19.D. Wu, Q.-D. Chen, L.-G. Niu, J.-N. Wang, J. Wang, R. Wang, H. Xia, and H.-B. Sun, Lab on a chip 9(16), 2391-2394 (2009).
http://dx.doi.org/10.1039/b902159k
20.
20.P. Galajda and P. Ormos, Journal of Optics B: Quantum and Semiclassical Optics 4(2), S78 (2002).
http://dx.doi.org/10.1088/1464-4266/4/2/372
21.
21.C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. N. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, The International Journal of Advanced Manufacturing Technology 48(5-8), 435-441 (2010).
http://dx.doi.org/10.1007/s00170-009-2320-4
22.
22.L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, Lab on a chip 12(6), 1135-1142 (2012).
http://dx.doi.org/10.1039/c2lc21116e
23.
23.S. Maruo and H. Inoue, Applied Physics Letters 89(14), 144101-144101-144103 (2006).
http://dx.doi.org/10.1063/1.2358820
24.
24.S. Maruo, A. Takaura, and Y. Saito, Optics express 17(21), 18525-18532 (2009).
http://dx.doi.org/10.1364/OE.17.018525
25.
25.A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, Journal of tissue engineering and regenerative medicine 1(6), 443-449 (2007).
http://dx.doi.org/10.1002/term.57
26.
26.F. Klein, B. Richter, T. Striebel, C. M. Franz, G. v. Freymann, M. Wegener, and M. Bastmeyer, Advanced materials 23(11), 1341-1345 (2011).
http://dx.doi.org/10.1002/adma.201004060
27.
27.R. Guo, S. Xiao, X. Zhai, J. Li, A. Xia, and W. Huang, Optics express 14(2), 810-816 (2006).
http://dx.doi.org/10.1364/OPEX.14.000810
28.
28.M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, Journal of optics 12(3), 035204 (2010).
http://dx.doi.org/10.1088/2040-8978/12/3/035204
29.
29.M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, Journal of Optics 12(12), 124010 (2010).
http://dx.doi.org/10.1088/2040-8978/12/12/124010
30.
30.D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, Applied Physics Letters 97(3), 031109 (2010).
http://dx.doi.org/10.1063/1.3464979
31.
31.T. Kondo, K. Yamasaki, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, Thin Solid Films 453-454, 550-556 (2004).
http://dx.doi.org/10.1016/j.tsf.2003.11.180
32.
32.A. Boltasseva and V. M. Shalaev, Metamaterials 2(1), 1-17 (2008).
http://dx.doi.org/10.1016/j.metmat.2008.03.004
33.
33.S. Noda, A. Chutinan, and M. Imada, Nature 407(6804), 608-610 (2000).
http://dx.doi.org/10.1038/35036532
34.
34.R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, and T. A. Klar, Optics express 21(9), 10831-10840 (2013).
http://dx.doi.org/10.1364/OE.21.010831
35.
35.T. W. Lim, S. H. Park, and D.-Y. Yang, Microelectronic Engineering 77(3-4), 382-388 (2005).
http://dx.doi.org/10.1016/j.mee.2005.01.022
36.
36.K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, Progress in Polymer Science 33(6), 631-681 (2008).
http://dx.doi.org/10.1016/j.progpolymsci.2008.01.001
37.
37.S. Wu, J. Serbin, and M. Gu, Journal of Photochemistry and Photobiology A: Chemistry 181(1), 1-11 (2006).
http://dx.doi.org/10.1016/j.jphotochem.2006.03.004
38.
38.M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, Physics Reports 533(1), 1-31 (2013).
http://dx.doi.org/10.1016/j.physrep.2013.07.005
39.
39.H. B. Sun and S. Kawata, J Lightwave Technol 21(3), 624-633 (2003).
http://dx.doi.org/10.1109/JLT.2003.809564
40.
40.M.-A. Maher, M. Malinauskas, V. Purlys, M. Rutkauskas, R. Gadonas, J.-C. Chiao, and P. J. Resnick, 7204, 72040C-72040C-72011 (2009).
41.
41.S. Passinger, R. Kiyan, A. Ovsianikov, C. Reinhardt, and B. Chichkov, inNanotechnology III, edited by F. Briones (Spie-Int Soc Optical Engineering, Bellingham, 2007), Vol. 6591, pp. 59104–59104.
42.
42.M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (CUP Archive, 1999).
43.
43.S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, Nanotechnology 16(6), 846-849 (2005).
http://dx.doi.org/10.1088/0957-4484/16/6/039
44.
44.D. S, L. De, A. J. G. Otuka, V. Tribuzi, and C. R (2012).
45.
45.X.-Z. Dong, Z.-S. Zhao, and X.-M. Duan, Applied Physics Letters 92(9), 091113 (2008).
http://dx.doi.org/10.1063/1.2841042
46.
46.H.-B. Sun, T. Tanaka, and S. Kawata, Applied Physics Letters 80(20), 3673 (2002).
http://dx.doi.org/10.1063/1.1478128
47.
47.H.-B. Sun, M. Maeda, K. Takada, J. W. Chon, M. Gu, and S. Kawata, Applied physics letters 83(5), 819-821 (2003).
http://dx.doi.org/10.1063/1.1598293
48.
48.H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, Applied Physics Letters 83(6), 1104 (2003).
http://dx.doi.org/10.1063/1.1599968
49.
49.R. J. DeVoe, H. Kalweit, C. A. Leatherdale, and T. R. Williams, P Soc Photo-Opt Ins 4797, 310-316 (2003).
50.
50.A. Ostendorf and B. N. Chichkov, Photon Spectra 40(10), 72-+ (2006).
51.
51.D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, Applied Physics Letters 90(7), 071106 (2007).
http://dx.doi.org/10.1063/1.2535504
52.
52.S. H. Park, T. W. Lim, D. Y. Yang, R. H. Kim, and K. S. Lee, Macromol Res 14(5), 559-564 (2006).
http://dx.doi.org/10.1007/BF03218724
53.
53.K. Takada, H.-B. Sun, and S. Kawata, Applied Physics Letters 86(7), 071122 (2005).
http://dx.doi.org/10.1063/1.1864249
54.
54.J.-F. Xing, X.-Z. Dong, W.-Q. Chen, X.-M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, Applied Physics Letters 90(13), 131106 (2007).
http://dx.doi.org/10.1063/1.2717532
55.
55.S. M. Kuebler, K. L. Braun, W. Zhou, J. K. Cammack, T. Yu, C. K. Ober, S. R. Marder, and J. W. Perry, Journal of Photochemistry and Photobiology A: Chemistry 158(2), 163-170 (2003).
http://dx.doi.org/10.1016/S1010-6030(03)00030-3
56.
56.J. Fischer and M. Wegener, Laser & Photonics Reviews 7(1), 22-44 (2013).
http://dx.doi.org/10.1002/lpor.201100046
57.
57.A. Spangenberg, N. Hobeika, F. Stehlin, J.-P. Malval, F. Wieder, P. Prabhakaran, P. Baldeck, and O. Soppera (2013).
58.
58.L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, Science 324(5929), 910-913 (2009).
http://dx.doi.org/10.1126/science.1168996
59.
59.J. Fischer, G. von Freymann, and M. Wegener, Advanced materials 22(32), 3578-3582 (2010).
http://dx.doi.org/10.1002/adma.201000892
60.
60.Y. Cao, Z. Gan, B. Jia, R. A. Evans, and M. Gu, Optics express 19(20), 19486-19494 (2011).
http://dx.doi.org/10.1364/OE.19.019486
61.
61.H.-B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M.-S. Kim, K.-S. Lee, and S. Kawata, Applied Physics Letters 85(17), 3708 (2004).
http://dx.doi.org/10.1063/1.1807019
62.
62.T. Tanaka, H.-B. Sun, and S. Kawata, Applied Physics Letters 80(2), 312 (2002).
http://dx.doi.org/10.1063/1.1432450
63.
63.D.-Y. Yang, S. H. Park, T. W. Lim, H.-J. Kong, S. W. Yi, H. K. Yang, and K.-S. Lee, Applied Physics Letters 90(7), 079903 (2007).
http://dx.doi.org/10.1063/1.2692435
64.
64.D.-S. Kim, Computer-Aided Design 30(14), 1069-1076 (1998).
http://dx.doi.org/10.1016/S0010-4485(98)00063-3
65.
65.C.-Y. Liao, M. Bouriauand, P. L. Baldeck, J.-C. Léon, C. d. Masclet, and T.-T. Chung, Applied Physics Letters 91(3), 033108 (2007).
http://dx.doi.org/10.1063/1.2759269
66.
66.S. H. Park, S. H. Lee, D.-Y. Yang, H. J. Kong, and K.-S. Lee, Applied Physics Letters 87(15), 154108 (2005).
http://dx.doi.org/10.1063/1.2103393
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/3/10.1063/1.4916886
Loading
/content/aip/journal/adva/5/3/10.1063/1.4916886
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/3/10.1063/1.4916886
2015-03-31
2016-12-05

Abstract

Two-photon polymerization (TPP) is a powerful and potential technology to fabricate true three-dimensional (3D) micro/nanostructures of various materials with subdiffraction-limit resolution. And it has been applied to microoptics, electronics, communications, biomedicine, microfluidic devices, MEMS and metamaterials. These applications, such as microoptics and photon crystals, put forward rigorous requirements on the processing accuracy of TPP, including the dimensional accuracy, shape accuracy and surface roughness and the processing accuracy influences their performance, even invalidate them. In order to fabricate precise 3D micro/nanostructures, the factors influencing the processing accuracy need to be considered comprehensively and systematically. In this paper, we review the basis of TPP micro/nanofabrication, including mechanism of TPP, experimental set-up for TPP and scaling laws of resolution of TPP. Then, we discuss the factors influencing the processing accuracy. Finally, we summarize the methods reported lately to improve the processing accuracy from improving the resolution and changing spatial arrangement of voxels.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/3/1.4916886.html;jsessionid=UZTXiV6O9TjCPtYEk575QEgf.x-aip-live-02?itemId=/content/aip/journal/adva/5/3/10.1063/1.4916886&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/3/10.1063/1.4916886&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/3/10.1063/1.4916886'
Right1,Right2,Right3,