Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/3/10.1063/1.4916918
1.
1.J. P. Fleurial, L. Gailliard, R. Triboulet, H. Scherrer, and S. Scherrer, J. Phys. Chem. Solids 49, 1237 (1988).
http://dx.doi.org/10.1016/0022-3697(88)90182-5
2.
2.H. Scherrer and S. Scherrer, inCRC Handbook of Thermoelectrics, edited by D. M. Rowe (CRC Press, London, U.K., 1995), ch. 19.
3.
3.V. A. Kutasov, L. N. Lukyanova, and M. V. Vedernikov, inThermoelectrics Handbook Macro to Nano (CRC, Boca Raton, 2006), Ch. 37.
4.
4.H. J. Goldsmid, J. Appl. Phys. 32, 2198 (1961).
http://dx.doi.org/10.1063/1.1777042
5.
5.Y. Ma, Q. Hao, B. Poudel, Y. C. Lan, B. Yu, D. Z. Wang, G. Chen, and Z. F. Ren, Nano Lett. 8, 2580 (2008).
http://dx.doi.org/10.1021/nl8009928
6.
6.N. K. Stark, T. E. Svechnikov, and S. N. Chizhevskaya, Inorg. Mater. 21, 328 (1985).
7.
7.L. V. Prokofieva, D. A. Pshenay-Severin, P. P. Konstantinov, and A. A. Shabaldin, Semiconductors 43, 937 (2009).
8.
8.L. D. Zhao, B. P. Zhang, W. S. Liu, H. L. Zhang, and J. F. Li, J. Solid State Chem. 181, 3278 (2008).
http://dx.doi.org/10.1016/j.jssc.2008.08.022
9.
9.Z. H. Ge, B. P. Zhang, Y. Liu, and J. F. Li, Phys. Chem. Chem. Phys. 14, 44754481 (2012).
http://dx.doi.org/10.1039/c2cp23955h
10.
10.L. D. Zhao, S. H. Lo, J. Q. He, H. Li, K. Biswas, J. Androulakis, C. I. Wu, T. P. Hogan, D. Y. Chung, V. P. Dravid, and M. G. Kanatzidis, J. Am. Chem. Soc. 133, 20476 (2011).
http://dx.doi.org/10.1021/ja208658w
11.
11.Q. Y. Zhang, H. Wang, W. S. Liu, H. Z. Wang, B. Yu, Q. Zhang, Z. T. Tian, G. Ni, S. Lee, K. Esfarjani, G. Chen, and Z. F. Ren, Energy Environ. Sci. 5, 5246 (2012).
http://dx.doi.org/10.1039/C1EE02465E
12.
12.Y. Z. Pei, J. Lensch-Falk, E. S. Toberer, D. L. Medlin, and G. J. Snyder, Adv. Funct. Mater. 21, 241 (2011).
http://dx.doi.org/10.1002/adfm.201000878
13.
13.Q. Zhang, F. Cao, W. S. Liu, K. Lukas, B. Yu, S. Chen, C. Opeil, D. Broido, G. Chen, and Z. F. Ren, J. Am. Chem. Soc. 2012, 134, 10031 (2012).
http://dx.doi.org/10.1021/ja301245b
14.
14.X. Shi, J. Yang, J. R. Salvador, M. F. Chi, J. Y. Cho, H. Wang, S. Q. Bai, J. H. Yang, W. Q. Zhang, and L. D. Chen, J. Am. Chem. Soc. 133, 7837 (2011).
http://dx.doi.org/10.1021/ja111199y
15.
15.R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).
http://dx.doi.org/10.1038/35098012
16.
16.P. Magri, C. Boulanger, and J. M. Lecuire, J. Mater. Chem. 6, 773 (1996).
http://dx.doi.org/10.1039/jm9960600773
17.
17.W. Liu, K. C. Lukas, K. McEnaney, S. Lee, Q. Z. , C. P. Opeil, G. Chen, and Z. Ren, Energy Environ. Sci. 6, 552 (2013).
http://dx.doi.org/10.1039/C2EE23549H
18.
18.M. Strasser, R. Aigner, M. Franosch, and G. Wachutka, Sens. Actuators A, Phys. 97, 535 (2002).
http://dx.doi.org/10.1016/S0924-4247(01)00815-9
19.
19.K. Itoigawa, H. Ueno, M. Shiozaki, T. Toriyama, and S. Sugiyama, J. Micromech. Microeng. 15, S233 (2005).
http://dx.doi.org/10.1088/0960-1317/15/9/S10
20.
20.H. Bottner, J. Nurnus, A. Gavrikov, G. Kuhner, M. Jagle, C. Kunzel, D. Eberhard, G. Plescher, A. Schubert, and K. H. Schlereth, J. Microelectro- mech. Syst. 13, 414 (2004).
http://dx.doi.org/10.1109/JMEMS.2004.828740
21.
21.M. Kishi, H. Nemoto, T. Hamao, M. Yamamoto, S. Sudou, M. Mandai, and S. Yamamoto, inProc. 18th Int. Conf. Thermoelectrics (1999) p. 301.
22.
22.A. Bulusu and D. Walker, Superlattices and Microstructures 44, 1 (2008).
http://dx.doi.org/10.1016/j.spmi.2008.02.008
23.
23.P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, inAn Augmented Plane Wave Plus Local Orbitals Pro- gram for Calculating Crystal Properties, edited by K. Schwarz (TU Wien, Austria, 2001).
24.
24.A. Zunger, S.-H. Wei, L. G. Ferreira, and J. E. Bernard, Phys. Rev. Lett. 65, 353 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.353
25.
25.A. Chroneos, C. Jiang, R. W. Grimes, and U. Schwingenschlögl, Chem. Phys. Lett. 493, 97 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.04.068
26.
26.J. P. Perdew, inElectronic Structure of Solids 199I, edited by P. Ziesche and H. Eschrig (Akademie Verlag, Berlin, 1991), Vol. 11.
27.
27.E. Engel and S. H. Vosko, Phys. Rev. B 47, 13164 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.13164
28.
28.G. K. H. Madsen and D. J. Singh, Comput. Phys. Commun. 175, 67 (2006).
http://dx.doi.org/10.1016/j.cpc.2006.03.007
29.
29.J. Tolle, A. V. G. Chizmeshya, Y.-Y. Fang, J. Kouvetakis, V. R. D’Costa, C.-W. Hu, J. Menendez, and I. S. T. Tsong, Appl. Phys. Lett. 89, 231924 (2006).
http://dx.doi.org/10.1063/1.2403903
30.
30.R. A. Soref and C. H. Perry, J. Appl. Phys. 69, 539 (1990).
http://dx.doi.org/10.1063/1.347704
31.
31.V. R. D’Costa, C. S. Cook, J. Menendez, J. Kovetakis, J. Tolle, and S. Zollner, Solid State Commun. 138, 309 (2006).
http://dx.doi.org/10.1016/j.ssc.2006.02.023
32.
32.J. L. Corkill and M. L. Cohen, Phys. Rev. B 47, 10304 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.10304
33.
33.R. V. S. Jensen, T. G. Pedersen, and A. N Larsen, J. Phys.: Condens. Matter 23, 345501 (2011).
http://dx.doi.org/10.1088/0953-8984/23/34/345501
34.
34.E. Simoen and C. Claeys, Electrochem. Soc. Proc. 17, 223 (2000).
35.
35.G. Joshi, H. Lee, Y. C. Lan, X. W. Wang, G. H. Zhu, D. Z. Wang, R. W. Gould, D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen, and Z. F. Ren, Nano Lett. 8, 4670 (2008).
http://dx.doi.org/10.1021/nl8026795
36.
36.X. W. Wang, H. Lee, Y. C. Lan, G. H. Zhu, G. Joshi, D. Z. Wang, J. Yang, A. J. Muto, M. Y. Tang, J. Klatsky, S. Song, M. S. Dresselhaus, G. Chen, and Z. F. Ren, Appl. Phys. Lett. 93, 193121 (2008).
http://dx.doi.org/10.1063/1.3027060
37.
37.F. Schaffler, inProperties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe, edited byM.E. Levinshtein, S.L. Rumyantsev, and M.S. Shur (John Wiley & Sons, Inc., New York, 2001), p. 149.
38.
38.P. Moontragoon, Z. Ikonić, and P. Harrison, Semicond. Sci. Technol. 22, 742 (2007).
http://dx.doi.org/10.1088/0268-1242/22/7/012
39.
39.R. Braunstein, A. R. Moore, and F. Herman, Phys. Rev. 109, 695 (1958).
http://dx.doi.org/10.1103/PhysRev.109.695
40.
40.J. Weber and M. I. Alonso, Phys. Rev. B 40, 5683 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.5683
41.
41. The power-factor (Pα2σ ) is defined as the product of the square of thermopower (α) with electrical conductivity (σ).
42.
42.P. Konstantinov, L. Prokof’eva, M. Fedorov, D. Pshenai-Severin, Y. Ravich, V. Kompaniets, and V. Chistyakov, Semiconductors 39, 1023 (2005).
http://dx.doi.org/10.1134/1.2042591
43.
43.Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G. J. , and Snyder, Nature 473, 66 (2011).
http://dx.doi.org/10.1038/nature09996
44.
44.H. Stohr and W. Klemm, Z. Anorg. Allgem. Chem. 241, 305 (1954).
http://dx.doi.org/10.1002/zaac.19392410401
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/3/10.1063/1.4916918
Loading
/content/aip/journal/adva/5/3/10.1063/1.4916918
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/3/10.1063/1.4916918
2015-03-31
2016-10-01

Abstract

The viability of Si-Ge alloys in thermoelectric applications lies in its high figure-of-merit, non-toxicity and earth-abundance. However, what restricts its wider acceptance is its operation temperature (above 1000 K) which is primarily due to its electronic band gap. By means of density functional theory calculations, we propose that iso-electronic Sn substitutions in Si-Ge can not only lower its operation to mid-temperature range but also deliver a high thermoelectric performance. While calculations find a near invariance in the magnitude of thermopower, empirical models indicate that the materials thermal conductivity would also reduce, thereby substantiating that Si-Ge-Sn alloys are promising mid-temperature thermoelectrics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/3/1.4916918.html;jsessionid=M8uZvPqE8_RL6UnUWB1XFpMf.x-aip-live-02?itemId=/content/aip/journal/adva/5/3/10.1063/1.4916918&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/3/10.1063/1.4916918&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/3/10.1063/1.4916918'
Right1,Right2,Right3,