Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Y. C. Chu, M. H. Wu, C. J. Chung, Y. H. Fang, and Y. K. Su, IEEE Electron Device Lett. 35, 771 (2014).
2.J. Day, J. Li, D. Y. C. Lie, C. Bradford, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 99, 031116 (2011).
3.H. X. Jiang and J. Y. Lin, Opt. Express. 21, A475 (2013).
4.P. F. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, J. Appl. Phys. 115, 033112 (2014).
5.E. Matioli, S. Brinkley, K. M. Kelchner, Y. L. Hu, S. Nakamura, S. DenBaars, J. Speck, and C. Weisbuch, Light: Science &Applications. 1, e22 (2012).
6.X. F. Li, J. D. Budai, F. Liu, J. Y. Howe, J. H. Zhang, X. J. Wang, Z. J. Gu, C. J. Sun, R. S. Meltzer, and Z. W. Pan, Light: Science &Applications. 2, e50 (2013).
7.T. Liang, X. Guo, B. L. Guan, J. Guo, X. L. Gu, Q. M. Lin, and G. D. Shen, Chin. Phys. Lett. 24, 1110 (2007).
8.S. C. Hsu, D. S. Wuu, X. H. Zheng, J. Y. Su, M. F. Kuo, P. Han, and R. H. Horng, Semicond. Sci. Technol. 23, 105013 (2008).
9.Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee, Opt. Express. 17, 20991 (2009).
10.J. W. Seo, H. S. Oh, J. S. Kwak, H. D. Song, K. W. Park, D. H. Park, S. W. Ryu, and Y. H. Park, J. Korean Phys. Soc. 55, 314 (2009).
11.T. Cheng, X. B. Luo, S. Y. Huang, and S. Liu, Int. J. Therm. Sci. 49, 196 (2010).
12.L. Kim, G. W. Lee, W. J. Hwang, J. S. Yang, and M. W. Shin, Phys. Status Solidi C. 7, 2261 (2003).
13.M. S. Kim, H. K. Lee, and J. S. Yu, Semicond. Sci. Technol. 28, 025005 (2013).
14.S. J. Chang, C. S. Chang, Y. K. Su, P. T. Chang, Y. R. Wu, K. H. Huang, and T. P. Chen, IEEE Photon. Technol. Lett. 9, 182 (1997).
15.M. C. Amann and F. Kappeler, Appl. Phys. Lett. 48, 1710 (1986).
16.N. C. Chen, Y. N. Wang, C. Y. Tseng, and Y. K. Yang, Appl. Phys. Lett. 89, 101114 (2006).

Data & Media loading...


Article metrics loading...



An array of 320 × 240 micro-light-emitting diodes (micro-LEDs) based on an AlGaInP epitaxial wafer and with a unit size of 100 µm×100 µm was designed and fabricated. The optimum width of the isolation groove between adjacent light-emitting units was determined based on a compromise between full isolation of each LED and maximization of the light emitting area, and was found to be 20 µm. The grooves were filled with a mixed Si granule-polyurethane composite medium, because this type of insulating material can reflect part of the emitted light from the sidewall to the window layer in each light-emitting unit, and could thus improve lighting output efficiency. The 10-µm-wide square-circle anode was designed to increase the light emitting area while simultaneously being simple to fabricate. The device current used was in the 0.42–1.06 mA range to guarantee internal quantum efficiency of more than 85%, with a corresponding voltage range of 2–2.3 V. The layered temperature distribution in a single unit was simulated under a drive voltage of 2.2 V, and the maximum device temperature was 341 K. The micro-opto-electro-mechanical systems (MOEMS) technology-based fabrication process, experimental images of the device and device test results are presented here.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd